|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

What is ActionScript ?

- ActionScript is an ECMAScript-based programming language used
for controlling Macromedia Flash movies and applications.

- Since both ActionScript and JavaScript are based on the same EC-
MAScript syntax, fluency in one easily translates to the other.

- However, the client model is dramatically different:
-while JavaScript deals with windows, documents and forms,
«ActionScript deals with movie-clips, text fields and sounds.

« Flash 7 (MX 2004) introduced ActionScript 2.0, which adds strong
typing and object-oriented features such as explicit class declara-
tions, inheritance, interfaces, and encapsulation.

- ActionScript code is frequently written directly in the Flash au-
thoring environment, which offers useful reference and powerful
aids for syntax checking.

- In this case, the source code is saved along with the rest of the
movie in a .fla file.

« Itis also common for ActionScript code to be imported from exter-
nal text files via #include statements.

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Naming

- Naming involves capitalisation of code elements.

- Function names and variables should begin with a
lower-case letter;

- objects should be capitalized.

- The first letter of each subsequent word should also be
capitalised in both cases.

for example:

Components or objects: Productinformation, MovieController
Variable or property: userName, myHtml, rawXml|

The Flash code editor features code completion only when vari-

ables are named according to a specific format. This involves ap-
pending the variable type to the end of the variable name.

Il caad:hbt:arch:ethz I T

Naming

code hints

- The Flash code editor features code completion only when variables are named according to a specific for-
mat. This involves appending the variable type to the end of the variable name.

NDS : Introduction To Flash MX / ActionScript

- Supported suffixes for code completion (not completed)

Obiject type

Array

Button

Color
ContextMenu
ContextMenultem
Date

Error

LoadVars
LocalConnection
MovieClip
MovieClipLoader
SharedObject
Sound

String

TextField

Video

XML

XMLNode
XMLSocket

Suffix string

_array
_btn
_color

_cm

_cmi

_date

_err

v

e

_mc

~mcl

e

_sound
_str

_txt

_video
_xml
_xmlnode
_xmlsocket

Example

myArray_array
myButton_btn
myColor_color
myContextMenu_cm
myContextMenultem_cmi
myDate_date
myError_err
myLoadVars_lv
myLocalConnection_|Ic
myMovieClip_mc
myMovieClipLoader_mcl
mySharedObject_so
mySound_sound
myString_str
myTextField txt
myVideo_video
myXML_xml
myXMLNode xmlnode
myXMLSocket xmlsocket

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Variables

Scoping and declaring variables

- Avariable’s scope refers to the area in which the variable is known and
can be referenced. There are three types of variable scopes in ActionScript:

- Timeline variables are available to any script on that Timeline.

« Local variables are available within the function body in which
they are declared (delineated by curly braces).

- Global variables and functions are visible to every Timeline and
scope in your document.

- ActionScript 2.0 classes also support public, private, and static variable
scopes.

- Difference between the globaland root scopes:
- The _root scope is unique for each loaded SWF file.
- Use the global identifier to create global objects, classes, or vari-
ables.
- The global scope applies to all Timelines and scopes within SWF
files.

- Use relative addressing rather than references to _root timelines, be-
cause it makes code reusable and portable.

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Variables

Timeline Variables

- Timeline variables are available to any script on that Timeline.

- To declare Timeline variables, initialize them on any frame in
the Timeline.

- Be sure to initialize the variable before trying to access
it in a script. For example, if you put the code var x = 10;
on Frame 20, a script attached to any frame before Frame
20 cannot access that variable.

[l l caad:hbt:arch:ethz [l [[111111111111|———NDS : Introduction To Flash MX / ActionScript

Variables

Local Variables

- To declare local variables, use the var statement inside the body of a func-
tion.

- Allocal variable is scoped to the block and expires at the end of the block.
- Allocal variable not declared within a block expires at the end of its script.

« Local variables can also help prevent name conflicts, which can cause er-
rors in your application.

- For example, if you use name as a local variable, you could use it
to store a user name in one context and a movie clip instance name
in another; because these variables would run in separate scopes,
there would be no conflict.

- It's good practice to use local variables in the body of a function so that
the function can act as an independent piece of code. A local variable is
only changeable within its own block of code. If an expression in a func-
tion uses a global variable, something outside the function can change its
value, which would change the function.

For example, the variables i and j are often used as
loop counters. In the following example, i is used as a
local variable; it exists only inside the function make-
Days():

function makeDays() {
var i;
for(1= 0; i <monthArray[month]; i++) {
_root.Days.attachMovie(“DayDisplay”, 1, 1 + 2000);

b

_root.Days[i].num =1+ [;

_root.Days[i]. x =column * root.Days[i]. width;
_root.Days[i]. y=row * root.Days[i]. height;
column = column + 1;

if (column ==7) {

column = 0;
row =row + 1;

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Variables

Global Variables

- Global variables and functions are visible to every Timeline and
scope in your document.

- To create a variable with global scope, use the _global identifier be-
fore the variable name, and do not use the var = syntax.

- For example, the following code creates the global variable
myName:

var _global.myName = “George”; // syntax error
_global.myName = “George”;

- However, if you initialize a local variable with the same name as a
global variable, you don’t have access to the global variable while you
are in the scope of the local variable:

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Variables

* Variables are used to store a variety of different types of
information

* A variable’s datatype relates to the information the vari-
able stores and assists Flash in determining which actions
are appropriate to invoke on this information.

« Strings, Numbers and Booleans are the most often
used variable data types.

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Variables

Numbers

* Numeric variables in Flash are variables whose values can be
manipulated using mathmetical expressions like multiplication.
For instance, if we wished to record the year in which something
happend, we would generally do it as a number, in the following
form:

founding_year = 2000;
current_year = 2003;

operational_for = current_year - founding_year;
other example:

my sum=1+2+ 3;

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Variables

Strings

« Strings are one or more characters (letters, digits, spaces,
etc.) tied together. In general this includes things like names,
addresses, and other information which can't be manipulated in
the same way as numbers.

« String values are signified in Flash by enclosing the text we
wish to store in our variable in double or single quotes.
country = ‘Australia’;

country = “Australia”;

my_sum = “1 + 2 + 37; NO Calculation!

link:

Type in the box below, the code you
would use to define a new variable
‘name’ with the value "Joe".

<D D

http://wiki.arch.ethz.ch/twiki/pub/Replay0405/FlashExamples/test1.swf

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Variables

Boolean

» Boolean variables might be a foreign concept to you if you
have never programmed before. Boolean variables store one of
two values: true or false.

* When you get into more complicated ActionScript such as
conditionals and loops you will use Boolean values often.

» They are used to store a logical representation of either true
or false which can be used in making decisions. If you wanted
to create a Boolean variable which shows that you like Flash,
you would do so as follows:

likeFlash = true;

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Variables

Changing Variable Types

« For instance, the following code, which creates a variable, as-
signs it a string value, then overwrites that value with a numeric
value, is perfectly acceptable:

fav_color = "purple";
fav_color = 1;

« This flexibility is often very useful but it can also make track-
ing down bugs caused by assigning variables the wrong type

of value very difficult. For instance, if you accidentally assign a
variable a string value and then try to add it to a numeric value,
Flash makes both values Strings and concatenates them to-
gether. In a small script this isn't such an issue, but in a full Rich
Internet Application it can be a bug finding nightmare.

myText = "purple";
myNumber = 1;

myResult = myText + myNumber;
myResult = “purple1”;

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Variables

Strict Data Typing

+ ActionScript 2.0 in Flash MX (Pro.) 2004 introduced the con-
cept of Strict Data Typing which allows developers to specify
the single acceptable type for a variable when the variable is
declared/defined.

var fav_color:String = “purple”;

« Strict Typing can also be applied to function return types and
arguments:

function doSomething(word:String):Number { link.

} Suppose | defined a variable 'myVariable' as follows, in each of the examples,
select if myVariable is of type String, Expression or Bool

myVariable =

This defines a function which must take a String argument and
must return a Number.

"l love Flash!™ (

2+4 @

“othervariable” (

false @
"3 45" @

atherVariable (

Boolean

Boolea

Boolean

Boolean

Boolean

v v VvV VU VWV
Y e e e a e
- W v v v w

Boolean

http://wiki.arch.ethz.ch/twiki/pub/Replay0405/FlashExamples/test2.swf

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Commenting Code

« Commenting code is always recommended.

 Comments should document the decisions made while
building the code, telling the story of what it attempts to
do.

* A future developer should be able to pickup the logic of
the code with the assistance of the comments.

var clicks = 0; //Thisis a simple comment

/*
This is a multiline comment.

Il caad:hbt:arch:ethz I T

NDS : Introduction To Flash MX / ActionScript

Commenting Code

» Some common methods for indicating important comments are:

//:TODO: more work to be done here
// :BUG: [bugid] this is a known issue
// :KLUDGE: this bit isn’t very elegant
// :TRICKY: lots of interactions, think twice before modifying

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Timeline layout

* Don’t use default layer names (Layer 1, Layer 2, etc.), provide
your own intuitive labels.

* Groups layers together in folders, where it makes sense.

* Place ActionScript layers at the top of the stack, to easily
locate all the code on the timeline.

* Lock layers currently not in use.

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Paths to Objects and Variables

* A path in Flash is analogous to a 'path’ in a park; it's a way of
getting from one place to another.

+ A path in Flash directs Flash's interpreter to a specific object
within the movie.

« Paths are vital to your understanding of Actionscript because
,without paths your entire SWF contents would have to reside
in one place (on one level for instance), which is increasingly
impossible with the fancy stuff designers and developers are
doing these days.

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Paths to Objects and Variables
Path to Objects

« Common Objects include MovieClips, Buttons and Text-
Field but those of you who understand Object Oriented Pro-
gramming will know that Objects in Flash are much more uni-
versal than these few examples.

» While you're a beginner, paths are probably most applicable in
terms of Buttons and Movie Clips, and using paths to reference
more advanced Objects works just the same, so we will focus on
these objects to begin with.

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Paths to Objects and Variables
Path to Objects

Example:

1. Imagine you have a movie clip on your main stage, called
‘clip1' for example. Within this clip is another clip called ‘clip2'.
Now imagine you have a button on the main stage also.
When the button is clicked you want it to perform an action on
‘clip2', (which action is not important, we'll use a visibility set
in our example).

mainStage

clip1

clip2
{action}

2. Selecting your button you add the actions as follows:

on (release) {
setProperty (“clip2”, visible, false);

clip2. visible = false;

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Paths to Objects and Variables
Path to Objects

Now you test your movie, hit your button and Wham!
... Nothing happens.

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Paths to Objects and Variables
Path to Objects

Why?

1. Thinking back to our example, recall that clip1 is on the
main stage and it contains clip2.

mainStage

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Paths to Objects and Variables
Path to Objects

2. Now, since clip1 contains clip2, clip2 does not actually reside
on the main timeline.

It is on the timeline within the clip1 Movie Clip.

We all know this, but Flash doesn't, so we have to tell it using
paths in our syntax!

mainStage

‘ clipt

clip2
{action}

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Paths to Objects and Variables
Path to Objects

3. The table below shows the path syntax parameters and gives examples of how to use them

Parameter Usage What it tells Flash
_levelO setProperty ("_level0" We're going right back to the lowest Level of the movie.
_root setProperty (“_root” “We’re going right to the bottom of the current Level;

to the Main Stage on which our base Objects are stored.”

. (dot) setProperty (“_root.clip1.clip2” “Whatever comes after this dot further defines the path to
something.”
In this case, clip2 is on the timeline of clip1 which is on the _root.

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Paths to Objects and Variables
Path to Objects

1. clip1is on the main timeline.
2. clip2 is within clip1.
3. The Main Timeline can be reference using “_root”.

mainStage:

‘ clip1

clip2
{action}

So, the path to clip2 is:

_root.clip1.clip2

NDS : Introduction To Flash MX / ActionScript

Il caad:hbt:arch:ethz I T

Paths to Objects and Variables
Path to Variables

* Variables are just a type of Object, so paths to variables
are specified in exactly the same manner as has been de-
scribed before.

* For instance, to set the value of a variable called foo’ within
clip2 in the ongoing example:
So, the path to the Variable in clip2 is:

_root.clip1.clip2.foo = “Some Value”;

link:
Main stage Enter the FULL path to the clip marked 'oldest’.
—‘ You may use any format used in this tutorial,
If you are correct, the display will show "Right!'
iﬁ Remeber that paths don't end with a dot and
- don't containt spaces
youngest |
[
; [crecxm |

b

oldest

http://wiki.arch.ethz.ch/twiki/pub/Replay0405/FlashExamples/object_paths.swf

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Instances

* An instance is a copy of any symbol from your Flash file’s
library which resides on the stage. So any graphic, button
or movie clip you put on the stage is an instance.

« All instances have Instance Names, which by default are

LT

“instance1”, “instance?”, etc.
* In MX we can address buttons using their instance names

and do all sorts of fancy stuff, so they’'ve become even more
important!

link:

RIF P

http://wiki.arch.ethz.ch/twiki/pub/Replay0405/FlashExamples/instances.swf

Il caad:hbt:arch:ethz I T

NDS : Introduction To Flash MX / ActionScript

How to learn ActionScript?

- do webpages ands animations with Flash and ActionScript
» make mistakes
* make mistakes
» make mistakes

» make mistakes

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

The Grammatik of ActionScript

Case Sensitivity

- ActionScript is case sensitive. This means that you have to take care
about uppercase and lowercase characters.

APFEL != apfel |= Apfel

NDS : Introduction To Flash MX / ActionScript

Il caad:hbt:arch:ethz I T

The Grammatik of ActionScript

speaking Variables

- use speaking Variables in your Scripts
- it makes live more easy
« it makes your Script more readable
- you and your Colleagues will understand your script faster

- e.g. rectlength, rectMovieClipXpos

Il caad:hbt:arch:ethz I T

NDS : Introduction To Flash MX / ActionScript

Repetition Statements

The FOR Statement

. for...to...do

for(init; condition; next) {
statement(s);

}

init: An expression to evaluate before beginning the looping sequence; usually an assignment ex-
pression. A var statement is also permitted for this parameter.

condition: An expression that evaluates to true or false. The condition is evaluated before each loop
iteration; the loop exits when the condition evaluates to false.

next: An expression to evaluate after each loop iteration; usually an assignment expression using
the increment (++) or decrement (--) operators.

statement(s): An instruction or instructions to execute within the body of the loop.

for (i=1; i<10; i++){ for (i=10; i>1; i--X
trace(i); trace(i);

} }

output: 123456789 output: 1098765432

* see also: break;
continue;

NDS : Introduction To Flash MX / ActionScript

Il caad:hbt:arch:ethz I T

Repetition Statements

The DO .. WHILE Statement

e do ... while

do {
statement(s)
} while (condition)

condition: The condition to evaluate.

statement(s): The statement(s) to execute as long as
the condition parameter evaluates to true.

var myVar:Number = 0;

do {
trace(myVar);
myVar++;

} while (myVar<5);
output: 01234

* see also: break;
continue;

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Repetition Statements

The WHILE Statement

* while ...

while(condition) {
statement(s);

}

condition: The condition to evaluate.

statement(s): The statement(s) to execute as long as
the condition parameter evaluates to true.

var i:Number = 0;

while (i<20) {
trace(i);
i +=3;
}

output: 0369121518

* see also: break;
continue;

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Repetition Statements

The FOR..IN Statement

* for..in

for(variablelterant in object) {
statement(s);

}

variablelterant: The name of a variable to act as the iterant, refer-
encing each property of an object or element in an array.

object: The name of an object to be iterated.

statement(s): The statement(s) to execute as long as the condition
parameter evaluates to true.

var myObject:Object = {name:"Tara”, age:27, city:"San Francisco”};
for (var name in myObject) {

trace(“myObject.”+name+” = “+myObject[name]);
}

/loutput

myQObject.name = Tara
myObject.age = 27
myObject.city = San Francisco

NDS : Introduction To Flash MX / ActionScript

Il caad:hbt:arch:ethz I T

Conditional Statements

The IF Statement

«if ... then ..
if(condition) {
statement(s);
}

condition: The condition to evaluate.

statement(s): The statement(s) to execute as long as
the condition parameter evaluates to true.

if(name == “Erica”){
play();

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Conditional Statements

The IF Statement

+if ... then ... else
if (condition){
statement(s);

}else {
statement(s);

}

condition: The condition to evaluate.

statement(s): The statement(s) to execute as long as
the condition parameter evaluates to true.

if (age>=18) {
trace(“welcome, user”);

} else {
trace(“sorry, junior”);
}

|l | caad:hbt:arch:ethz I NDS : Introduction To Flash MX / ActionScript

Conditional Statements

The SWITCH Statement

* switch ()
switch (expression){
caseClause:
[defaultClause:]
}

expression: Any expression.

caseClause: A case keyword followed by an expression, a colon, and a group of statements to execute if the
expression matches the switch expression parameter using strict equality (===).

defaultClause: A default keyword followed by statements to execute if none of the case expressions match the
switch expression parameter strict equality (===).

switch (String.fromCharCode(Key.getAscii())) {
case “A”:
trace(“you pressed A”);
break;
case “a” :
trace(“you pressed a”);
break;
case “E”:
case “e”:
trace(“you pressed E or €”);
break;
default :
trace(“you pressed some other key”);

}

