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Abstracts

Let,s start with Bubbles......

Several months ago | was amazed by the pneumatic objects and the soap bubble structure.

In fact the soap bubble is one kind of pneumatic object which constrains itself to maximum
volume and minimum surface area; along with the surface tension it establishes an amazing
balanced and fragile structure. In this thesis | would like to explore the bubble structure, seek
a possibility to use computer programming to reinterpret soap bubble structure. Architecture
today is not only built by the concrete, steel and glasses anymore. Our power of the new tools
will help us to discover the variety of prototypes. Besides a data-driven structure can change
shape and define itself by the users. Wherefore structures will be able to adapt themselves
physically to changing circumstances, instead of collecting sudden circumstances to enhance
the architecture itself. The project of National swimming centre in Beijing Olympic has already
revealed to use the bubble structure as roof structure to create the presentation of water.
This proved that with computer programmers have introduced the method to indicate the
possibilities and restrictions of structural Architecture projects.
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CONCEPT

The concept is to divide research into two parts, first is to
collecting the existing information of the rules of soap
bubble geometry, in order to comprehend the behaviors
of soap bubbles. The second part will take dodecahedron
as single and simplified soap bubble unit, by using the
mathematic calculation of Platonic solid, multiple the
unit and create the array for the composition for soap
bubbles’ coordinate system. Polyhedral variations are
an additional extension to contribute the production
of Platonic solid coordinate system. The Surface Evolver
which is the wrapping step to generate the surface
of soap bubble. The goal is to generate a useful data
system which has possibility to interpret the soap bubble
behaviors.

The projeetsof Nati
Centre in Beijing Ol

_a &ork of Takashi Murakdrﬁ







When
Bubbles
Meet
Bubbles......
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HISTORY OF SOAP BUBBLE GEOMETRY

The Introduction

The dodecahedron has 20 vertices, 30 edges and 12 faces- each with five sides. But what solid has 22.9
vertices, 34.14 edges and 13.39 faces -each with 5.103 sides? Some kind of elaborate fractal, perhaps?
No, this solid is an ordinary, familiar shape, one that you can probably find in your own home. Look
out for it when you drink a glass of cola or beer, take a shower or wash the dishes. Bubbles have
fascinated people ever since the invention of soap. But the mathematics of bubbles and foam only
really got going in the 1830s, when Belgian physicist Joseph A. Plateau began dipping wire frames
into soap solution and was astounded by the results. Despite 170 years of research, we still have
not arrived at complete mathematical explanations - or even descriptions of - several interesting
phenomena that Plateau had observed. Soap bubbles and films are examples of an immensely
important mathematical idea called a minimal surface. This is a surface whose area is the smallest
possible, subject to certain additional constraints. Minimal surfaces relate to bubbles because the
energy caused by surface tension in a soap film is proportional to its area. Nature likes to minimize
energy-so bubbles minimize area. For example, the surface of smallest area that encloses a given
volume is a sphere, and that’s why isolated soap bubbles are spherical. A soap film is so thin-about a
millionth of a meter-that it closely resembles an infinitely thin mathematical surface. Without some
constraint, the area of a minimal surface would be zero. The most common constraints are that the
surface should enclose some given volume or that its boundary should lie on some given surface or
curve, or both. A bubble that forms against a flat tabletop, for example, is usually a hemisphere, and
this is the smallest area surface that encloses a given volume and has a boundary lying in a plane .



Plateau’s observation about the 1200 angle was quickly
established as a mathematical fact. The proof is often
credited to the great geometer Jacob Steiner in 1837,
but Steiner was beaten to the punch by Evangelista
Torricelli and Francesco B. Cavalieri around 1640. All these
mathematicians actually studied an analogous problem
for triangles. Given a triangle and a point inside it, draw
the three lines from that point to the triangle’s vertices
and add up their lengths. Which point makes this total
distance smallest? Answer:the point that makes the three
lines meet at angles of 1200 . (Provided no angle of the
triangle exceeds 1200, that is - otherwise the desired point
is the corresponding vertex.) The problem for soap films
can be reduced to that for triangles by intersecting the
films with a suitable plane.In 1976 Frederick J. Almgren, Jr,,
then at Princeton University and Jean E.Taylor; then at the
Massachusetts Institute of Technology, proved Plateau’s
second rule about 1090 28 angles. By the spherical
analogue of the Torricelli-Cavalieri theorem, these arcs
must always meet in threes at angles of 1200The 1200 rule
leads to a beautiful property of two coalescing bubbles. It
has long been assumed on empirical grounds that when
two bubbles stick together; they form three spherical
surfaces, arranged as in the illustration on the opposite
page. This is the Double Bubble Conjecture. If it is true,
the radii of the spherical surfaces must satisfy a simple
relationship. Let the radii of the two bubbles be R and S
and let the radius of the surface along which they meet

20

Plateau’s Rule for the angle between
four bubble edges was proved by
considering the possible ways in which
six faces meet. The vertices are enclosed
in a sphere, on which the faces meet at
angles of 120 degrees. As shown, only 10
shapes meet this criterion; of these, only
the first , three are physically plausible,
because they correspond to minimal
areas.

Radii of two coalescing bubbles and
their common surface obey a simple
relationship.



beT.
Then the relationshipis:  1/R=1/S+1/T

This fact is proved in Cyril Isenberg’s delightful hook The Science of Soap Films and Soap Bubbles,
using no more than elementary geometry and the 1200 property. All that remains is to prove that
the surfaces are parts of spheres, and it is this that Hass and Schlafly achieved in 1995-but only
by making the additional assumption that the bubbles are of equal volume. Their proof required
the assistance of a computer; which had to work out 200,260 integrals associated with competing
possibilities-a task that took the machine a mere 20 minutes! One curious fact that is known about
the unequal volume case is that whatever the double-bubble minimal configuration is, it must he
a surface of revolution.
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THE BUBBLE DYNAMIC

Physicists have been studying foams for a long time to investigate their dynamic properties.
Although there is a great deal of published research in soft condensed matter physics on many
aspects of foams, foam dynamics is still far from completely understood. Due to the instability of
liquid foam, many foam experiments tend to be very difficult to perform.This is one reason why
physicists developed and used computer simulations of foam structure and dynamics. Most of
the approaches restrict themselves to the simulation of two dimensional foams. This reduction in
dimensionality significantly decreases the complexity of the problem and most insights gained
from these 2D simulations can be transferred to the 3D case.

Liquid foams are two phase systems consisting of a liquid enclosing bubbles of gas. Depending on
the liquid content, the structure of the foam can vary greatly. In an extremely wet foam, the gas
bubbles are spherical and separated by large amounts of liquid. At the other extreme, a very dry
foam consists of extremely thin films of liquid separating the gas bubbles. Foams encountered

in everyday life such as beer foam or dish washing foam are quite dry, featuring liquid films with
thickness ranging from a few to several tens of microns. Where the films meet, small tubes with a
triangular cross-section are formed. Known as Plateau borders, these tubes are where most of the
water in a foam is contained. They are responsible for some of the characteristic visual properties
of liquid foams. The surface tension in liquids causes contracting forces along the surface of the
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liquid. As a result, liquids always try to minimize
their surface area. The reason why a bubble
remains stable and does not collapse into a drop
of liquid is that there is an excess pressure inside
the bubble. This produces forces acting on the
bubble surface that exactly cancel the forces
owing to the surface tension.

The Laplace-Young Law

Laplace and Young derived an equation relating
the radius of curvature R of a liquid film with
surface tension to the pressure difference
between the gas cells it separates: This law can
be used to compute the radius of individual soap
bubbles, as well as the radius of curvature of
films separating two gas cells. According to this
law, such a separating liquid film will be curved
toward the cell with the smaller pressure. It also
follows from this law that smaller bubbles have
higher pressure than larger bubbles and thus
the separating film between two different size
bubbles will be curved towards the larger bubble.
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Law of Plateau

In the 19th century, Plateau performed experiments with soap films and frameworks. He
experimentally established rules about the geometric properties of soap films that were later
theoretically proven. These rules state that the liquid films in a foam always meet in groups of
three. At these junctions (the Plateau borders) the films always form angles of 120. The Plateau
borders themselves meet in groups of four in the tetrahedral angle of 109.5.

By inspection, a froth of soap bubbles suggests that an infinite variety of configurations can be
formed by joining soap bubbles, when actually they come together in only two ways. The possible
configurations are governed by a few elementary rules that have been known for more than a
century. More recently, Frederick J. Almgren, Jr, and Jean E. Taylor showed that three basic rules
govern the geometry of soap bubbles and that these rules are the mathematical consequence of a
simple Area-minimizing Principle.

The three basic rules are:

1. a compound soap bubble consists of flat or smoothly curved surfaces smoothly joined
together.

2. the surfaces meet in only two ways: Either exactly three surfaces meet along a
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smooth curve or six surfaces (together with four curves) meet at a vertex.

3. when surfaces meet along curves or when curves and surfaces meet at points, they do
so at equal angles. In particular, when three surfaces meet along a curve, they do so at
angles of 120° with respect to one another, and when four curves meet at a point, they
do so at angles of 109.47° (109°28"16”").

Dynamic Effects in Liquid Foams

The structure of foam changes over time for several reasons. Gravity exerts forces on the liquid,
resulting in a drainage of the foam. Thus, the films get thinner over time, and the probability

of film rupture increases. As more and more films break, the foam gets coarser and finally
disintegrates. Additionally, in the case of froth on a liquid, new bubbles could rise from the liquid
and add to the foam from below.
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And
...Now...
the Troubles
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COMPOSITION OF DODECAHEDRON

Dodecahedron

Area = 3y/25 + 10v/5a2

Volume

L5+ 7V5)d®

A dodecahedron is a Platonic solid composed of
twelve pentagonal faces, with three meeting at
each vertex. It has twenty vertices and thirty edges.
Its dual polyhedron is the icosahedron. Canonical
coordinates for the vertices of a dodecahedron
centered at the origin are {(0,£1/@,+), (+1/¢,+¢,0),
(20,0,21/), (£1,£1,£1)}, where @ = (1+5)/2
is the golden mean. Five cubes can be made
from these, with their edges as diagonals of the
dodecahedron’s faces, and together these comprise
the regular polyhedral compound of five cubes. The
stellations of the dodecahedron make up three of
the four Kepler-Poinsot solids. The face angle of a
dodecahedron is approximately 116.565 degrees. The
term dodecahedron is also used for other polyhedra
with twelve faces, most notably the rhombic
dodecahedron which is dual to the cuboctahedron
and occurs in nature as a crystal form.The normal
dodecahedron is sometimes called the pentagonal
dodecahedron to distinguish it. The 20 vertices and
30 edges of a dodecahedron form the basic map for a
computer game called Hunt The Wumpus. Especially
in roleplaying, this solid is known as a d12, one of the
more common Polyhedral dice.
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Caculation OF Dodecahedron

& © »

do-dec-a-he-dron

n. pl. do-dec-a-he-drons or do-dec-a-he-dra (-dr)
A polyhedron with 12 faces

Note: The regular dodecahedron is bounded by twelve equal and reqular pentagons; the pyritohedron (see
Pyritohedron) is related to it; the rhombic dodecahedron is bounded by twelve equal rhombic faces.

Platonic solid

n :any one of five solids whose faces are congruent reqular polygons and whose polyhedral angles are all
congruent
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dB

L/2=5*C0OS36°
P=S*SIN36°
dA=(2*$*C0OS36°-S)/2
dB*dB=(P*P) - (dA*dA)

The Dodecahedron has been a source of metaphysical
interest forat least 2000 years. Like a crystal or gem, its
facets and symmetries compel our eyes and hearts to
observe life more deeply. Some have believed that the
Dodecahedron represents an idealized form of Divine
thought, will, or idea. To contemplate this symbol was
to engage in meditation upon the Divine. Today many
people believe there is a lost knowledge residing in
the past, slowly being rediscovered. It is known that
figures like Pythagoras, Kepler, and Leonardo, among
many, were educated in these Sacred Geometries, and
held many beliefs about them and their role in the
Universe.

Hereweuseanininternalcubetodivide dodecahedron
for the convenience of calculations. As the graphic on
the left,we can see how the calculation and coordinate
system appeared.
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The Coordinates

P19

FRONT

RADIUS:100, CENTER POINT(0,0,0)

P10

POINT X Y z POINT X Y z

Po o 35.682 -93.417 P10 35.682 -93.417 o

P1 o -35.682 -93.417 P11 -35.682 -93.417 [¢)

P2 93.417 o -35.682 P12 57.735 -57.735 -57.735
P3 93.417 o 35.682 P13 57.735 -57.735 57.735
P4 o 35.682 93.417 P14 -57.735 -57.735 57735
Ps o -35.682 93.417 P15 -57.735 -57.735 -57.735
P6 -93.417 o 35.682 P16 57.735 57.735 -57.735
P7 -93.417 o -35.682 P17 57.735 57.735 57.735
P8 -35.682 | 93.417 ° P18 -57.735 57735 57735
P9 35.682 93-417 ° P19 -57.735 57735 -57.735




K=2*Radius
P19 d*d=2*L*L
K*K=d*d+L*L
K*K=3*L*L
P8 e L=(\/Z/3)*R
L/2=57.735
P12 dB=(L/2)-dA=22.053
P14 dA=(2*C0S36°-1)*(L/2)
L =(0.618033988)*(L/2)
P13 =35.682
POINT X Y z POINT X Y z
Po o 35.682 -93.417 P10 35.682 -93.417 o
P1 o -35.682 -93.417 P1 -35.682 -93.417 o
P2 93.417 o -35.682 P12 (L/2) -(L/2) -(L/2)
P3 93.417 o 35.682 P13 (L/2) -(L/2) (L/2)
P4 o 35.682 93.417 P14 -(L/2) -(L/2) (L/2)
Ps o -35.682 93.417 P15 -(L/2) -(L/2) (L/2)
P6 -93.417 o 35.682 P16 (L/2) (L/2) (L/2)
P7 -93.417 o -35.682 P17 (L/2) (L/2) (L/2)
P8 -35.682 93.417 o P18 -(L/2) (L/2) (L/2)
Pg 35.682 93.417 o P19 -(L/2) (L/2) -(L/2)
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L/2=57.735

C0S36°=0.809016994

dB=(L/2)-dA=22.053
dA=(2*C0S36°-1)*(L/2)

=(0.618033988)*(L/2)
=35.682
POINT Coordinate dx dy dz

Po M.16.19 o -dB -dA
P1 M.12.15 o dB -dA
P2 M.12.16 dA o dB
P3 M.13.17 dA o -dB
P4 M.a718 o -dB dA
Ps Ma3ag [¢) dB dA
P6 M.14.18 -dA o -dB
P7 M.15.19 -dA o dB
P8 M.a8.19 dA dB ¢)
Pg M.16.17 -dA dB o
P10 M.12.13 -dB -dA o
P M.4.15 dB -dA o
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The Rules of Muti-Units Array

Faces POINT

Fo 0,16,2,12,1

F1 2,16,9,17,3

F2 2,3,13,10,12

F3 0,1,15,7,19

Fa4 0,16,9,8,19

F5 11,15,1,12,10

F6 9,19,7,6,18

F7 6,7,15,11,14

F8 5,14,11,10,13

Fo 3,13,5.4.17

Fio 4,18,6,14,5

F11 8,17,4,18,9

0,1
(=5, cp) (s.¢))

(=5p—cy) (530 =)

36°
il )
a = m(%"):;z(\/g_l) n = sin(%”)=§\/1o+2\/5
e = cos(%):%(ﬁ-;—l) 52 = sin(%):%\/m—zx/ﬁ_



All Polyhedral Variations










The Surface Evolver

From left to right, Schwarz P surface, cluster of five bubbles, shape of a droplet on a spinning rod.

The Surface Evolver is a software developed by Ken Brakke at University of Minnesota since the
early1990s. It is specifically designed to find minimal energy configurations of interfaces under
almost arbitrary constraints, and to find the evolution path towards those optimal states. The
Evolver can handle interfaces of arbitrary topology and almost arbitrary dimension. Interactive
modifications of the computed surface are also possible. The software has been used to study
many problems in mathematics and the physical sciences, such as minimal surfaces, sphere
eversion, or lipid vesicle shapes. See figures above for a few examples.

Maybe the best feature of the Surface Evolver is that it is freely available to everyone, for a
variety of computer platforms. Downloads, documentation, and more information
can be found in : http://www.susqu.edu/facstaff/b/brakke .

Quoted from : httpwww.math.leidenuniv.nl~nawseriesdeelo3sep2002pdfhilgenfeldt.pdf
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More
Bubbles??
More

Troubles???
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THE SCRIPT

The VectorScript

PROCEDURE dodecahedron;

VAR
cCenter,cVx,cVy,cVz:VECTOR;
p:ARRAY[0..19] OF VECTOR;
side:ARRAY[0..12,0..5] OF INTEGER;
sideCenter:ARRAY[1..12] OF VECTOR;
pa,pb,pc:VECTOR;
newSide,i:INTEGER;

PROCEDURE doDode( center,vx,vy,vz:VECTOR; Radius:REAL);
VAR
kij,LmyUnit,dA,dB,centerX,centerY,centerZ:REAL;
h:HANDLE;
lob:HANDLE;
pindex,sindex,psindex:INTEGER;

BEGIN
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J=5qrt(a/3);
i:=Cos(Pi/s);
ke=((2"1)-1);
L:=j*Radius;
myUnit:=(L/2);
dA:=(k*myUnit);
dB:=(myUnit-dA);

:=center+myUnit*vx-myUnit*vy-myUnit*vz;
:=center+myUnit*vx-myUnit*vy+myUnit*vz;
14]:=center-myUnit*vx-myUnit*vy+myUnit*vz;
5]:=center-myUnit*vx-myUnit*vy-myUnit*vz;
6]:=center+myUnit*vx+myUnit*vy-myUnit*vz;
J:=center+myUnit*vx+myUnit*vy+myUnit*vz;
:=center-myUnit*vx+myUnit*vy+myUnit*vz;
:=center-myUnit*vx+myUnit*vy-myUnit*vz;

[

[1]: 15
P[2]:=(P[12]+P[16])*0.5+dA*vx+dB*vz
P[3]:=(P[13]+P[17])*0.5+dA*vXx-dB*vz
Pl4]:=(P[17]+P[18])*0.5-dB*vy+dA*vz;
P[5]:=(P[13]+P[14])*0.5+dB*vy+dA*vz;
P[6]:=(P[14]+P[18])*0.5-dA*vx-dB*vz;
P[7]:=(P[15]+P[19])*0.5-dA*vXx+dB*vz;
P[8]:=(P[18]+P[19])*0.5+dB*vx+dA*vy;
Pl9]:=(P[16]+P[17])*0.5-dB*vX+dA*vy;

[

P[1o]:=(P[12]+P[13])*0.5-dB*vx-dA*vy;
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P[11]:=(P[14]+P[15])*0.5+dB*vx-dA*vy;

5|de[1,o] =0;side[1,1]:=16;side[1,2]:=2;side[1,3]:=12;side[1,4]:=1; {F0:0,16,2,12,1}
[2,0]:=2;side[2,1]:=16;side[2,2]:=9;side[2,3]:=17;side[2,4]:=3; {F1:2,16,9,17,3}
side[3,0]:=2;side[3,1]:=3;side[3,2]:=13;side[3,3]:=10;side[3,4]:=12; {F2:2,3,13,10,12}
side[4,0]:=0;side[4,1]:=1;side[4,2]:=15;side[4,3]:=7;side[4,4]):=19; {F3:0,,15,7,19}
side[5,0]:=0;side[5,1]:=16;side[5,2]:=9;side[5,3]:=8;side[5,4]):=19; {F4:0.16,9,17,3}
side[6,0]:=11;side[6,1]:=15;side[6,2]:=1;side[6,3]:=12;side[6,4]:=10; {F5:11,15,1,12,10}
side[7,0]:=8;side[7,1]:=19;side[7,2]:=7;side[7,3]:=6;side[7,4]:=18; {F6:8,19,7,6,18}
[8,0]:=6;side[8,1]:=7;side[8,2]:=15;side[8,3]:=11;side[8,4]:=14; {F7: 6,7,15,11,14}
side[9,0]:=5;side[9,1]:=14;side[9,2]:=11;side[9,3]:=10;side[9,4]:=13; {F8:5,14,11,10,13}
side[10,0]:=3;side[10,1]:=13;side[10,2]:=5;side[10,3]:=4;side[10,4]:=17; {F9:3,13,5,4,17}
side[11,0]:=4;side[11,1]:=18;side[11,2]:=6;side[11,3]:=14;side[11,4]:=5; {F10:4,18,6,14,5}
side[12,0]:=9;side[12,1]:=17;side[12,2]:=4;side[12,3]:=18;side[12,4]:=8; {F11:8,17,4,18,9}

side

FOR sindex:=1TO 12 DO BEGIN
sideCenter[sIndex].x:=0;
sideCenter[sIndex]y:=o;
sideCenter[sIndex].z:=0;

FOR pIndex:=0 TO 4 DO BEGIN

sideCenter[sIndex]:=sideCenter[sIndex]+P[side[sIndex,pIndex]];

END;
sideCenter[sIndex]:=sideCenter[sIndex]*(1.0/5.0);

sideCenter[sIndex]:=sideCenter[sIndex]-center;
END;
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FOR sIindex:=1TO 12 DO BEGIN
{NameObject(Concat('side’,sIndex));}
ClosePoly;

BeginPoly3D;
FOR pIndex:=0 TO 4 DO BEGIN

Add3DPt(P[side[sIndex,pIndex]].x,P[side[sIndex,pIndex]].
y,P[side[sIndex,pIndex]].z);

END;
EndPoly3D;
END;
END;
BEGIN
ccenter.x:=0;
ccentery:=o;
ccenter.z:=0;

CVX.X:=T1,CVXY:=0;CVX.Z:=0;
CVY.X:=0;CVYYy:=1,CVy.Z:=0;
CVZ.X:=0;CVZY:=0;CVZ.2:=1;
doDode(ccenter,cvx,cvy,cvz,100);

FOR i:=1TO 650 DO BEGIN
newSide:=1+trunc(random*12);

46



ccenter:=ccenter+2.0*(sideCenter[newsSide]);
pa:=p[side[newSide,o]];
pb:=p[side[newSide]];
pc:=(pa+pb)*o.5;
cvz:=UnitVec(ccenter-pc);
cvy:=UnitVec(pb-pa)*.0;
cvx:=UnitVec(CrossProduct(cvy,cvz));
doDode(ccenter,cvx,cvy,cvz,100);

END;

END;

run(dodecahedron);
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