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ABSTRACT ENGLISH

Generation and optimization of complex and irregular construction/structure 
on the example of NDS2004 final project

During the postgraduate studies in CAAD at ETH the research is mainly focused on computer based 
architectural design and its automatic production.  Usually the way from an architectural idea to production 
starts with creating of a digital model of the structure which is than transformed into data which can be 
used by CNC machines.  The final group work of NDS2004 students also follows this schema.  This thesis is
centered on its first element – computer aided architectural design.

The aim of the research was to create a programming tool which generate linear construction grids for a 
cubic form and then optimize them according to given parameters. The data produced during this process 
is then visualized by digital models which can be evaluated by a designer as ready for production or can be 
changed in a further design process. Eventually, this data is an input for scripting tools creating production 
drawings for CNC machines.  

The thesis contains information about the mathematical description of the structure, methods of its 
generation, analysis and optimization. It deals also with problems connected with data exchange and 
storage.  The effect of the work is presented by visualizations of digital models as well as by using rapid 
prototyping methods. Moreover, the most spectacular result of using tools presented in this thesis is the 
NDS2004 exhibition structure.
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ABSTRACT DEUTSCH

Generierung und Optimierung komplexer und irregulärer Konstruktionen/
Strukturen am Beispiel des Schlussprojektes des NDS2004 

Während des CAAD Nachdiplomstudiums an der ETH konzentriert sich die Forschung hauptsächlich auf 
computerunterstütztes Design und dessen automatische Produktion. In den meisten Fällen beginnt die 
Umsetzung einer architektonischen Idee mit der Erstellung eines digitalen Modells der Struktur, der dann 
in Daten umgewandelt wird, die von CNC-Maschinen gelesen werden können. Die Endgruppenarbeit der 
Studenten des NDS2004 befolgt ebenfalls dieses Schema. Die vorliegende These behandelt in erster Linie 
computerunterstütztes Architekturdesign. 

Ziel der Forschung war die Erstellung eines Programmierwerkzeugs, welches lineare Konstruktionsraster für 
kubische Formen generiert und diese anhand gegebener Parameter optimiert. Die Daten, die durch diesen 
Prozess produziert wurden, können dann durch digitale Modelle visualisiert werden. Letztere werden von 
einem Designer evaluiert und für die Produktion benutzt oder in einem weiteren Design-Prozess verändert. 
Es ist möglich diese Daten als Input für Scripting-Werkzeuge zu benutzen, die Produktionszeichnungen für 
CNC-Maschinen erstellen.

Die These enthält Informationen über die mathematische Beschreibung der Struktur, Methoden 
derer Generierung, Analysen und Optimierungen. Ferner werden auch Probleme bezüglich des 
Datenaustausches und der Speicherung behandelt. Das Ergebnis dieser Arbeit wird anhand von digitalen 
Modellvisualisierungen wie auch durch die Benutzung von Rapid Prototyping Methoden vorgestellt. Der 
NDS2004 Prototyp ist überdies das spektakulärste Ergebnis bei der Benutzung von Werkzeugen in dieser 
These.
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1.  BACKGROUND

1.1 The CAAD Chair at the Swiss Federal Institute of Technology in Zurich
 Eidgenössische Technische Hochschule Zürich (ETH)

The CAAD Chair at the department of architecture, ETH Zürich, researches the using of 
modern information technologies as a development of the concept of architecture. This 
extended definition encompasses: design support by means of digital media, manufacturing &
construction with computer controlled machines and intelligent building services.
(from: http://wiki.arch.ethz.ch/twiki/bin/view/NDS/NdsIntroduction)

1.2 Postgraduate Studies in CAAD
NachDiplomStudium (NDS) in CAAD

The postgraduate studies in CAAD are open to Swiss and international graduates with 
professional experience from the field of architecture and related disciplines. The main focus
of the curriculum is computer based architectural design (CAD) and its automatic production 
(CAM).
(from: http://wiki.arch.ethz.ch/twiki/bin/view/NDS/NdsIntroduction)

1.3 NDS group work as a crowning of postgraduates studies in CAAD at ETHZ

Apart from the fact that the students are required to produce individual theses to complete 
postgraduates studies at ETHZ, NDS CAAD students are expected to work as a group on one 
common, large and complex project. Students of two previous NDS courses designed the so-
called pavilions, that is small scale architectural objects without a specified function. Moreover,
the structures were not only designed – they were also build in 1:1 scale, using CNC machines 
and other equipment provided by the CAAD Chair.
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After some discussion, NDS04 students also decided to follow this pattern – at least as far as 
an architectural scale and production methods are concerned. This thesis presents a workflow
and effects of the research and programming in the first phase of the design and production
process; namly, the stage where the designer’s idea concerning the NDS04 structure is 
translated into a language understandable to machines and optimized so that it can exist not 
only on the computer screen, but also in the real world.

It is important to realize that the presented work is only an example – a particular instance – of 
all possibilities which the designer is offered by computers. The main idea of the structure can 
be extended and used also for bigger and more complex architectural forms. Furthermore new 
features can be added and analyzed. So this work should also be regarded only as an instance of 
endless variety of all possible solution. Nevertheless, it shows that thanks to using computers 
an unknown level of complexity and truly integrated design and manufacturing is now more 
achievable. 
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2.1 content of the thesis on the background of the NDS04 
groupwork

The first idea regarding a NDS2004 CAAD group work object could
be described quite easily – its outside form is a cube, built by freely 
rotated planes (on first sketches, they were rotated only  around one
of the three 3D coordinate system axis). From the structure built by 
planes an inside shape is subtracted. This work schema results in a 
structure built by irregular frames.

During the programming phase described in this thesis the general 
idea was being more and more specified and defined. In the final
project the planes are rotated freely in all directions. Because of the 
time-limit (there were only two months between the beginning of 
the programming and the manufacturing start ) the outside and 
inside shapes remained cubic, but the idea can be also applied to 
other outside and inside forms.

2.  INTRODUCTION

| 2.1 | the work of the 
thesis’ author against a 
background of the entire 
production process.2.2 structure of the thesis

The goal of NDS students was not only to design the structure and visualize it on the 
computer screen, but also – and it was a far bigger challenge – to build it using real 
materials, machines etc. The work described in this thesis fully coveres two phases of “from 
idea  to a final product” process (fig, 2.1)  – the generation of a wire frame model of an 
object structure grid and its optimization with regard to diverse esthetic, manufacturing 
and material features.
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Other examples of computer generation and optimization usage in architectural design are 
also presented as well as more specified mathematical and theoretical background of the
programming.  Details of the NDS04 groupwork are also described, followed by a description 
of used scripting language in Appendix 1, while the list of created scripts with their parameters 
and functions can be found in Appendix 2.

2.3 role of CAAD technologies

The idea about the appearance of a form comes from usually the designer during the design 
process , as a sketch or other form of visualization. In NDS project it is more a verbal “description”, 
where is a place for computer generation and calculation. Consequently, the computer has a big 
influence on the final form – its construction as a surface structure as well as its elevations.

The computational optimization is also crucial in this case, because the generated structure 
is so complex and irregular that is seems to be impossible to analyze it without using of a 
computer. Or, to put it differently, it is hardly possible to find a bulidable solution among all
generated propositions without complicated calculations. Also every, even the smallest, change 
of any structure element entail such complex changes in the entire construction, that   it has to 
be recalculated and reanalyzed. Here the main reason of using a computer in this project can be 
seen – the structure is simply so complex that it has to be tackled with by a machine.

| 2.2 | schema of the cube creation idea
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| 3.1 | Multiplanar 
surface 
articulation: 
through 
the mutual 
adaptation 
of geometric 
fitness criteria
and geometric 
articulation the 
morphogenetic 
process yields an 
ever-increasing 
complexity of two 
co-evolved surfaces 
that nevertheless 
remains coherent 
with the logics 
of the material 
system and 
manufacturing 
with a laser cutter.
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3.  COMPUTER GENERATION 
AND OPTIMIZATION PROCESSES 
IN ARCHITECTURAL DESIGN

gen•er•a•tion n.

1. the formation of a line or geometric figure by the movement of a point or line.
2. the act or process of generating; origination, production, or procreation.

op•ti•mi•za•tion  n. 
 
The procedure or procedures used to make a system or design as effective or functional as 
possible, especially the mathematical techniques involved.

The American Heritage® Dictionary of the English Language, Fourth Edition
Copyright © 2000 by Houghton Mifflin Company.

Optimization is a process of looking for a solution to a given problem. Its aim is to make structure 
features as close to the optimum as possible. It does not result with  the perfect and the “one 
and only” solution, mostly because the problems in question are so complex that there is no 
possibility to check and decide if it is the ideal solution or it is only an approximation. Moreover, 
the effect of this process is always different, even with the same input data. 

Usually it is difficult to consider in architectural design computer aided generation without
optimization and vice versa. Naturally when the aim of an architect is only to create a good 
looking, pure virtual form – the computer generation could exist without optimization, but 
structures generated by random need optimization to become buildable. Moreover,  evolutionary 
generating algorithms seem to consist also optimization tools.
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| 3.2 | Beijing National Stadium – structure 
after optimization

| 3.3 | Beijing National Stadium – structure 
before optimization, visible non-straight 
elements    

The idea of  optimization in architectural design is not new. Fabric architects were the first to
use computers to optimize form and design in architectural structures – pioneer research was 
done by Frei Otto in the late 50’s.  J. Gero and A.D Radford In a book “Design by Optimization 
in Architecture and Building” were considering different possibilities of using optimization 
tools already in 1988 – but more in relation to function planning and cost analyses.   Examples 
of structure optimization are not yet so numerous. The most spectacular is probably Beijing 
National Stadium, Olympic Green, China by Herzog and deMeuron.  Here the irregular structure 
elements support each other and build a  grid-like formation (fig. 3.2, 3.3 ). 
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The “Water Cube” (fig. 3.4, 3.5) was 
an idea for a design competition 
entry submitted by China State 
Construction Engineering(CSCEC) 
in collaboration with PWT 
Architects and Arup Sidney. The 
project is a world class swimming 
centre in Beijing for the 2008 
Olympic games.  The structure was 
inspired by cells and soap bubbles 
and it is based on a common 
natural process, the most natural 
effective subdivision of 3D space.  
This structure is highly repetitive 
and buildable while appearing 
very organic and random.  The 
optimization process meant in 
this project that the sectional sizes 
and node diameters were even 
changing and non – repetitive. 

There are also some examples in more  theoretical using of evolutionary generation and 
optimization.  The Emergence and Design Group (Michael Weinstock, Achim Menges and 
Michel Hansel) used evolutionary algorithms in research project on high-rise buildings as 
surface structures (fig. 3.6, 3.7).  The “seed” – the section of a steel tube was generated at the 
beginning of the process,  it finally resulted with a double-helix structure.  the development of
the phenotype (the definition – see OPTIMIZATION) was driven by exposure of the geometry to 
environmental forces.  The surface of the structure was covered by panels which were active 
locally and responding local stimuli, they were capable of modulating the passage of light, heat 
and air through it in both directions. 

| 3.4 |  (above) Water Cube - external steel           
          frame perspective
| 3.5 | (right) Arup realtime screenshot; from     
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| 3.6 | research project on high-rise 
           buildings as surface structures - 
           helix evolution
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| 3.8 | |3.9 |  digital model evolved by a digital 
                      morphogenetic process using Genr8.

| 3.7 |  research project on high-rise 
           buildings as surface structures
           skin panel
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Contemporary architects  can experiment with evolutionary generation algorithms also 
using the software developments that operate on the intersection of architecture, artificial
intelligence, artificial life, engineering and material science.  Here presented example was
created with Genre8, a combination of evolutionary computation and generative algorithm. It 
is implemented as a plug-in for Alias Wavefront’s 3D modeler Maya.  In experiment ( fig. 3.8,
3.9) described in (O’Reilly , 2004)  two interlocking surfaces evolved through geometric fitness
criteria. 
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4.1 overview

Fig. 4.1 describes definitions which were introduced in the
generation and optimization description. As it was mentioned 
before, the outside form of the NDS2004 object is a cube. 

The structure is built by planes, i.e. flat, thin,  freely rotated
construction elements which are connected with each other 
so that they form a stable structure. Joints are located where 
planes intersect. The areas between planes are called panels. 

4. GENERATION

| 4.1 | definition: plane, panel and
joint

4.2 structure of the generation script

Generally, the generating script consists of two main procedures.  Firstly, the planes are generated 
randomly – this part is the actual generating script. Secondly, the planes are visualized inside a 
cube as they build a structure. Of course there are also other procedures used during the process 
(see Appendix2).

4.2.1 procedure of planes generation

The generation procedure has only one parameter, i.e. the number of planes expected as a 
result. The planes should satisfy the following conditions: they should be generated randomly 
in space and be irregular – not parallel to the cube sides. They should also be located in space in  
a manner that they intersect with the cube. In addition they should build a rigid structure – so 
intersect with at least few others. 
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| 4.2 | the schema of generation algorithm

Because of the limitation that already occurres during the generation  the planes should follow 
some rules and fulfill some conditions, like:
 - planes are define firstly by 3 points which are randomly choose on edges of the  
 cube (so that they intersect the cube for sure)
 - there should be no 3 points on the same side (fig. 4.2a)
 - there should be no 2 points on the same edge (fig. 4.2b)
 - the angle between generated plane and 3D coordinate system planes should not   
 be close to 90 in any direction (fig. 4.2, see in the chapter OPTIMIZATION).
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This particularset of rules was formulated after some experiments with different generation 
patterns. One of these experiments started with an idea that perhaps it would be better if  the 
planes were building a more regular structure already during the generation process – with 
perpendicular and vertical planes rotated only a little in relation to each other.  The script based 
on a rule that only first point of every plane is created totally at random. Next points coordinates
had restrictions – as it is shown on a fig. 4.3.  Eventhough the idea seemed promising, the 
visual effect of the experiment did not fulfill the expectation. The structure turned out to be
too regular. Secondly, the optimization of the grid using this generation pattern resulted in the 
structure which had only parallel planes and looked like a regular, straight construction grid.

| 4.3 | schema for generation with restriction algorithm
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4.2.2 calculation and storage of data

The data about the three points defining plane (as 9 values –  x, y, z coordinates of the points) is
then already recalculated inside the generation procedure to describe a plane only by 4 values: 
<<x, y, z>> of normal vector (perpendicular to this plane) and translation in space. Owing to this 
recalculation the data which is necessary to describe a cube and redrawit again is minimized to 
a list of four values for every plane (fig. 4.4).

While working with Maya it turned out that the variables used by scripts were not saved during 
the file saving – so all the numeric data about the generated structure was lost every time, 
just a 3D wireframe model was stored in .mb file. From the moment it was discovered, all the
scripts were structured so that they are able to restore all the information about its variables, 
coordinates, coefficients etc. only from the list of four digits planes descriptions. Therefore there
is no need to store a Maya file with the cube model. Instead it is enough to save text/numeric
output in a plain text file.

Because the information about the structure is used by drawing construction procedures and 
scripts, the data has to be stored in a way that it can be than reused. Particularly the data about 
joints is crucial for production procedures. From the mathematical point of view joints in the 
study object are intersection points between two planes and cube side. In other words, every 

| 4.4 | the structure of the coeficients
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plane has an intersection line with a cube side. If two of these lines (i.e. from two different 
planes) intersect a joint comes into being.
The data about the joints is stored in arrays (lists of values), where values on the same position 
refer to the same point. The arrays includes following information:
 - the number of the cube side where the point is located (because all calculations   
 are executed on 2D planes of cube faces)
 - x ,y, z coordinates of the point
 - numbers of two intersecting lines which create this point (thanks this the
 information it can be recalculated which planes intersect to build this particular   
 joint)

| 4.5 | structure of the data storage
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Arrays are also used to store information about lines. Because the lines are always consider as 
drawn on the cube’s sides (also on planes) - they can be described by a equation of a line on a 
plane, not in space.  Information about the lines includes:
 - A,B,C – coefficients from the a line equation Ax+By+C=0 (where x, y are    
 coordinates of points on the line)
 - the number of the side where the line is located (the third coordinate of every   
 point of this line)
 - the number of plane which creates the line

| 4.6 | examples of different structures 
           with different numbers number 
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4.3 visualization

From the programming point of view there is no need to visualize data during and after the 
generation process. But a visual analysis of 3D structure model can be useful for both the 
programmer and for the designer. Firstly, the programmer can evaluate results of scripting and 
check if there are no mistakes in algorithms’ principles. Secondly, the designer can assess an 
esthetic result of generation and/or change some features manually if it is needed or desired. 
These are the reasons why (even if no drawings are needed for the generation) already in this 
phase of work the visualization scripts were created. 

The 3D model of the generated construction grid is a linear, wire frame structure. It is drawn in 
space with lines which connect intersection points of every plane and appropriate cube edges.

The intersection between a plane and a cube is a polygon with 3, 4, 5 or 6 edges (fig.4.7c). The 
coordinates of polygon vertexes are known (as intersection points between the plane and the 
cube face), but it has to be decided how these points are connected in space (fig. 4.7b).

| 4.7 | schema of the drawing 
           algorithm 
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| 4.8 | example of rapid prototyping model
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This problem is solved in a following way: 
intersection points between the plane and 
edges of the cube are checked for every 
side one after the other, so every cube face 
is analyzed separately(fig. 4.7d) but drawn 
together in the 3D space (fig. 4.7c). The idea 
of separate calculations for every side of the 
cube is then continued in all scripts. Thanks to 
this most of the calculation is done on a plane 
– the cube side– not in space; this makes the 
procedures easier and they can be executed 
with the use of less variables.

Naturally this simplification works only for
a cube or regular cuboid. Other forms (such 
as irregular form built by flat faces, cones,
spheres, cylinders or curvilinear forms “blobs”) 
need scripting with 3D vector geometry 
description and calculation. During the work 
on the structure (by production drawing 
preparation for NDS04, with Michelangelo 
Ribaudo) some experiments with 3D vectors 
are already done, so some knowledge about 
how the work can be continued for more 
complex forms is already gathered. More 
considerations about the further work on the 
generation can be found in chapter entitled 
FURTHER WORK in the thesis.

| 4.9 | | 4.10 | (right) examples of the structure
                         small models of different materials

| 4.11 | | 4.12 | (next pages) - examples of models  
                          produced by 3D printer                                     
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| 4.13 | example of rapid prototyping model
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5. OPTIMIZATION

5.1 Overview – the optimization of NDS structure

The optimization process has to take place on the script-generated structure, because  it is 
created by a generation algorithm completely at random so it cannot be used instantly as a 
supporting construction. Its members should be optimized so that the entire construction 
fulfills conditions connected with materiality. Generally the variety of these condition could be
quite wide: the type and thickness of the construction material influence the structure as well
as features of materials used as panels. Machines used to produce structure elements also have 
their limits which can change structure parameters. All this information should be gathered 
and then used during the optimization as parameters.

5.2 Optimization methods

5.2.1 Genetic algorithms

gene n. 
A hereditary unit consisting of a sequence of DNA that occupies a specific location on a
chromosome and determines a particular characteristic in an organism. Genes undergo 
mutation when their DNA sequence changes.

The American Heritage® Dictionary of the English Language, Fourth Edition
Copyright © 2000 by Houghton Mifflin Company.
Published by Houghton Mifflin Company. All rights reserved.

The idea of optimization can be easily presened on an example of genetic algorithms (GA). 
The algorithms mimic some methods and ideas similar to the ones from real world in digital 
world.  They were introduced into optimization problem solving area by Holland(1975) and 
Goldberg(1989) and since then they still demonstrate their usefulness through numerous 
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applications and theoretical projects (e.g. in research on flooding paths model in metropolitan
area, Wen 2004).

The generic algorithms serve as visualisation and optimization tools. In visualization they “(…) 
can be used to explore the space in which it is impossible for the designer to consider all potential 
configuration in advance, and only if what results shock or at least surprises.”(DeLanda, 2002).
In optimization of a structure GA can be used when the structure itself is so complex that it 
cannot be analyzed and optimized in any traditional way, even with the use of a computer.  
“Traditional way, but with the use of machine” is used here to mean an analysis of every possible 
combination. If the number of possible combinations is infinite and when the time needed for
calculation is also close to infinity, the use of GA is the best solution.

Let us try to imagine how GA can be used to optimize the wireframe of thecube structure.

The process of optimization by GA starts with creation of so called population. In our example 
it is a group of individuals – instances, randomly generated cubes with the same or different 
number of planes. The phenotype is simply  their visualization the way the cubes look like. The 
phenotype of every cube is described by a genotype. In this case genes are data about every plane 
in a cube.

After creation, individuals’ features are verified to check whether they fit to given parameters.
The fitness function for every cube also is calculated.  The value of fitness function informs how
close the individual cube is to the optimal solution – the optimal cube. The process resulting in 
fitness function is based on analisis of good and bad qualities of the structure. Good features
can be that a plane in a cube has intersection points with other planes (if it doesn not have, it 
cannot build a rigid structure). On the other hand, bad features are for example too big or too 
small distance between planes’ joints.

After “good” cubes are chosen, the best of them can reproduce. A reproduction is exchanging 
pieces of the genotype (this process is called the same as in genetics – crossing over). The new 
sets of genes are then genotypes for new cubes – children, instances of the second generation. 
Some of the parents can also be a part of a new population, also some old cubes with mutations 
as well as newly generated ones. The whole analysis, reproduction and mutation are then 
repeated on new population of cubes. (fig. 5.1 )

| 5.1 | genetic algorithm on example of cube structure
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At the end the optimized solution is an effect of a long cycle of this random process; every time 
it can lead to different results, even with the same starting population.

With the population generation as a random process it seems that a designer has not so 
big influence on the final result. But this impression is only partly true – by manipulation of
the fitness function and setting different rules for reproduction, the effect of the process of
evolution can be modified significantly.

| 5.2 | the difference between non-optimized (1)
          and optimized cube (2)

1. 2.
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5.3.2 evolutionary algorithms 

ev·o·lu·tion    n. 
1. a gradual process in which something changes into a different and usually more complex or 
better form.
2. biology: 
a. change in the genetic composition of a population during successive generations, as a result    
of natural selection acting on the genetic variation among individuals, and resulting in the 
development of new species. 
b. the historical development of a related group of organisms; phylogeny. 

The American Heritage® Dictionary of the English Language, Fourth Edition
Copyright © 2000 by Houghton Mifflin Company.
Published by Houghton Mifflin Company. All rights reserved.

Because of a short time-limit for the programming, finally for the optimization of the structure
a simplified version of evolutionary algorithm is used. Evolutionary algorithms are tools that
also mimic the natural biological evolution to produce better and better approximation for 
a solution of a problem, but they are more focused on an  individual than a population.  The 
evolution in the natural world occurs mainly as a process of individuals’ adaptation to the 
environment. The individuals which phenotype is better adjusted to the outside condition have 
better condition for reproduction, so their genes survive. This pattern is also used in architecture 
for form generation algorithms, where the environmental factors influence the appearance of an
individual. By structure optimization the appearance (the form) is given and only the structure 
evaluate so that at the end of the process it is so close to optimal as possible. 

During the fitness function calculation it is important to decide which features are the most
important for a good solution (they will influence the structure the most), which are less
important and which are only mentioned because of aesthetic point of view. These decisions 
also influence the final effect of an evolutionary process.

In the example of a cube the main presumption is that every plane in a structure can be analyzed 
only in environment of other planes, because only in coexistence with others it has bad or good 
features. Here the fitness function is calculated not for the whole structure, but for every plane
separately. 

| 5.3 | (next page) schema of the algorithm for panels searching
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5.3 search for panels

From the construction point of view the most important data is how the intersection points 
are connected to each other on cube sides, so how they build panels. The data related to 
them is not produced by the generation/visualization script. The panels are searched during 
the optimization.  Again here all the calculations are done side by side. Even if for a human 
it is obvious where the polygons are when he/she looks at a linear drawing, it is not so easy 
for a computer. Lines have intersection points but not every intersection point is a vertex of 
every polygon. In the analyzed case every point is a vertex of 4 polygons but the polygons have 
different numbers of edges etc. (fig. 5.4).

| 5.4 | problems occurring during panels searching

Finding polygons is very important because it allows analyzing distances between intersection 
points. Although the shortest distances could be easily found by checking “every point with 
every point”, there is no way to analyze the longest distances between points it there is no 
information if they form a panel. 

The algorithm used to find panels bases on schema presented on the fig. 5.3. When a panel is cut 
by a line, two new ones are created (or no new ones if the line doesn’t cross the panel). Analyzing 
and calculating is done with arrays: one of them is a list of intersection points coordinates, and 
others are lists of these point numbers, which form a panel. The idea is that if we have all vertexes 
of the base polygon and we know how they are connected to each other (in the example we 
start with cube’s face), we can find two new ones quite easily – by analyzing the new vertexes
set by its order. The results of the “looking for panels” process are two lists: one with panels’ 
description (sets of their vertexes) and second – list of all the vertexes with coordinates. 
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7.6 experiments with optimization

The experiments with optimization were taking place during the last 3 weeks of programming 
phase. They were not easy to carry on, mostly because of the poor MAYA calculation possibilities 
or, in other words, problems with storing a lot of variables needed during panel calculation. 
Already at the beginning it turned out that it could be a reason why it would be difficult to
produce purely calculated solution for the NDS04 structure, without any manual work. That 
was also why some additional tools came into being – like the script to add planes to a structure 
(see ADDITIONAL TOOLS).

The optimization process gave a big variety of possibilities to carry different experiments. Firstly, 
different factors and features were analyzed during the optimization, and they had different 
importance for fitness function calculation. A general idea was that the fitness value is a sum
of “minus points”. These points were given to the cube planes according to different factors and 
qualities. 

In the NDS04 structure the analyzed factors were (fig. 5.5):

the distance between joints: it shouldn’t be too small (difficulties in production) as well as too
big (the strength of the material could be too small and deformation could appear); the values 
for the calculation were: minimum distance = 20cm, maximum distance 120cm. Naturally, the 
change of these values would lead to different optimization results. The planes were given the 
“minus points” in following way: the panel edge connected two joints – intersection points. 
These two points were created by 3 planes – one is common for both. If the edge is too short 
or too long – all three planes which produced the edge’s ends were given “minus points”, for 
example -20 for each, but the common one – twice (because this calculation was carried on for 
every point separately).

In the fig.5.3 only the general idea is presented. The most important difference between this 
simplified schema and existing script is that there is not a separate list of panels vertexes which
is created during panels searching. Already by generation the list of intersection points is done 
and this list is used by looking for panels procedure. When a vertex of a panel is found, it is also 
found on a list of intersection points. Number of a point on this second list is used in panel 
description. Thus there is less data to store in computer memory.
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the number of intersection points between 
planes: at the beginning of the work this feature 
was not analyzed, what followed to a situation 
that the optimized cube has only planes almost 
parallel to each other (because it was better 
not to build any panels and “risk” that a panel 
will have too long or too short edges). The final
settings for this factor were that if the plane 
has less than 10intersection points (at least 3 
are always present, because as “intersection 
points” also the intersections between planes 
and cube edges were considered), the fitness
value were decreased by 100; if the number 
of them is between 10 and 25, -20 is given to 
a plane.

distance between the cube edges and joints: 
the distance between the edge of the cube 
and the joint is also created by the so-called 
“wall width”, i.e. the distance between the 
outside cube form and inside subtracted one. 
In reality, no frame has a thickness like the “wall 
width”, because every one of them is rotated 
in space. Hence, during the optimization this 
virtual “wall width” was important as the one 
which build “inside edges” of the cube, from 
where distances were measured. The distance 
between cube edges and joints were set as not 
smaller than 40cm.

| 5.5 | the features analyzed during the optimization
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The optimization as a process should be considered as a repetition of the analyses and structure 
changes which should be continued so long that at the end every fitness value of the set is 0.
With Maya and MEL this condition should be taken only theoretically – because usually there 
were no possibility to carry on such a large number of repetition that the fitness function
were even close to 0, because of the calculation interruption caused by memory lack. Yet the 
gradual decreasing of the fitness values was visible. The problem was also that there were no
information exchange between the plane which was deleted from a structure and the new one 
which does not learn from the previous one. This caused the situation that the newly generated 
plane was also the worse in the next analysis and was deleted again. 

Because there was no possibility to repeat optimization so long that it will be finished by
itself (when the fitness values for every plane would be 0), there could be always the situation
that exactly before the process was interrupted, a totally not proper plane was to be add to a 
structure. On the table 1 and 2 one of author’s approaches to optimization is presented. It is also 
visible that it is not always like that the next cube is better than the previous one – optimization 
is not a linear process. It is highly possible that better combinations of the cube planes already 
appeared during the process, but they were changed by next generated planes.

| 5.6 | (left) general schema of 
           optimization process

table.1 (next page) the example of an 
optimization process - fitness and text
data for every cube

table 2. (pages 56, 57) the example 
of an optimization process with the 
starting cube the same as in table 1. 
example
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randomly generated structure 
with 14 planes

fintessPlane
-585
-712
-655
-517
-481
-589
-506
-633
-619
-627
-789
-537
-455
-615

$Aplane = {-0.6852115463,-0.7426512167,0.4971806603,-0.7844700
563,0.6078703267,0.3035522522,0.5411090797,0.7513749198,0.3776
949831,-0.8542221339,0.1253389532,0.8935463422,-0.7316335487,0.
5166281294}
$Bplane = {-0.85547919,-0.5257354989,-0.2396018465,0.3761611
482,-0.6142055264,0.5274820043,-0.6609640487,0.333143232,-
0.2885789413,-0.07795086631,-0.5403049125,-0.8925908984,0.0661
7009698,0.4894187047};
$Cplane = {0.1140953176,-1,-0.6582924576,0.56206228,-0.97045
20426,0.3035417907,0.4628582146,0.4264845831,0.2957041816,-
0.9099377541,-0.5144283928,-0.5077448487,0.64859504,-1};
$Dplane = {0.590257952,1.343744045,-0.1698903816,0.3435490279,
0.5576517578,-0.6709109629,-0.2504567825,-0.8574096835,-0.2731
342375,0.9169581842,0.4725836603,0.1270492236,-0.05269316084,-
0.3666677878}

structure after next 2100 repetition 
of optimization script

fintessPlane
-333
-518
-324
-361
-400
-570
-473
-192
-415
-403
-414
-421
-560
-531
-227

$Aplane = {-0.6861576864,-0.8967815676,-0.8159411043,0.130351482
8,-0.06723860033,0.3505639473,0.2962542798,0.7513749198,0.37769
49831,0.110385696,0.06417568244,0.8001291268,-0.7316335487,0.394
3025245,-0.1683425576};
print$Bplane = {-0.2348370697,-0.2310051497,0.2255431864,0.11870
75187,-0.333748583,0.4734546185,0.9238132462,0.333143232,-0.2885
789413,0.3373776439,0.1887016771,0.1081284548,0.06617009698,-
0.8029128584,0.1705221879};
$Cplane = {-0.5787754168,0.5612787313,-1,-0.6881717248,0.8293387158
,-1,0.07133735348,0.4264845831,0.2957041816,0.2486815412,0.9153831
063,-0.5363352463,0.6485950437,-0.5043305723,-0.1753707825};
$Dplane = {0.397131201,0.1730708389,0.9104710663,-0.14586712
41,0.05356957612,0.4764696504,-0.3031986495,-0.8574096835,-
0.2731342375,-0.6002091555,-0.9955261385,-0.3709916745,-0.052693
16084,0.4401986892,0.02952236604}

structure after next 3000 repetition 
of optimization script

fintessPlane
-289
-375
-425
-407
-381
-265
-531
-632
-485
-398
-433
-395
-356
-482
-414

$Aplane = {-0.6840459908,-0.9169479293,-0.09319688926,-
0.1826128985,-0.5487596555,-0.08220094687,0.2962542798,0.10249
27641,0.3776949831,0.06417568244,-0.03658594423,-0.1683425576,0
.3165069806,-0.9538141297,0.615628249};
$Bplane = {0.5337042875,-0.8163656739,-0.8516940395,-1,-
0.0004223066636,-0.1073388793,0.9238132462,-0.07631474529,-0.2
885789413,0.1887016771,-0.1463959257,0.1705221879,-1,0.143320981,-
0.67433088};
$Cplane = {-0.5378307192,-0.5864130723,0.08146179449,-0.4671026
336,0.2895879878,-1,0.07133735348,0.1664231234,0.2957041816,0.91
53831063,0.3599932206,-0.1753707825,-0.1950670765,-0.167766814
7,0.3012193158};
$Dplane = {0.3189677126,1.334977887,0.8234974581,0.9392271677,0.38
9845451,0.9007125179,-0.3031986495,-0.05191477092,-0.2731342375,-
0.9955261385,0.01122602639,0.02952236604,0.08326195688,0.9305
417502,-0.5017104259};
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randomly generated 
structure with 14 planes

fintessPlane=
-585
-712
-655
-517
-481
-589
-506
-633
-619
-627
-789
-537
-455
-615

$Aplane = {-0.6852115463,-0.7426512167,0.4971806603,-0.7844700
563,0.6078703267,0.3035522522,0.5411090797,0.7513749198,0.3776
949831,-0.8542221339,0.1253389532,0.8935463422,-0.7316335487,0.
5166281294}
$Bplane = {-0.85547919,-0.5257354989,-0.2396018465,0.3761611
482,-0.6142055264,0.5274820043,-0.6609640487,0.333143232,-
0.2885789413,-0.07795086631,-0.5403049125,-0.8925908984,0.066
17009698,0.4894187047};
$Cplane = {0.1140953176,-1,-0.6582924576,0.56206228,-0.97045
20426,0.3035417907,0.4628582146,0.4264845831,0.2957041816,-
0.9099377541,-0.5144283928,-0.5077448487,0.64859504,-1};
$Dplane = {0.590257952,1.343744045,-0.1698903816,0.3435490279,
0.5576517578,-0.6709109629,-0.2504567825,-0.8574096835,-0.2731
342375,0.9169581842,0.4725836603,0.1270492236,-0.05269316084,-
0.3666677878}

structure after 300 repetition of 
optimization script

fintessPlane=
-391
-364
-188
-346
-413
-276
-365
-499
-372
-177
-303
-361
-376
-323

$Aplane = {-0.6861576864,0.3505639473,-0.3514701599,0.16195380
91,0.6078703267,0.3035522522,0.2962542798,0.4138325003,0.3776
949831,0.06417568244,0.1024927641,0.8935463422,-0.7316335487,-
0.5487596555};
$Bplane = {-0.2348370697,0.4734546185,0.6297872424,0.7529827
407,-0.6142055264,0.5274820043,0.9238132462,-0.4049047607,-
0.2885789413,0.1887016771,-0.07631474529,-0.8925908984,0.06617
009698,-0.0004223066636};
$Cplane = {-0.5787754168,-1,0.4192413675,0.845269367,-0.97045204
26,0.3035417907,0.07133735348,-0.2336354248,0.2957041816,0.91538
31063,0.1664231234,-0.5077448487,0.6485950437,0.2895879878};
$Dplane = {0.397131201,0.4764696504,0.04683977208,-0.8703285
824,0.5576517578,-0.6709109629,-0.3031986495,0.08726453298,-
0.2731342375,-0.9955261385,-0.05191477092,0.1270492236,-0.05269
316084,0.389845451}

structure after 600 repetition of 
optimization script

fintessPlane=
-370
-285
-190
-436
-383
-290
-310
-558
-462
-347
-274
-478
-362
-224

$Aplane = {-0.4798258258,0.3505639473,-0.3514701599,0.16195380
91,0.6078703267,0.3035522522,0.5151925663,-0.05458522902,0.377
6949831,0.9015372746,0.1024927641,-0.6161822505,-0.7316335487,-
0.5487596555};
$Bplane = {-0.8158845759,0.4734546185,0.6297872424,0.7529827
407,-0.6142055264,0.5274820043,-0.309003091,-0.8468868293,-
0.2885789413,-0.6997724918,-0.07631474529,0.3739638344,0.06617
009698,-0.0004223066636};
$Cplane = {0.190850323,-1,0.4192413675,0.845269367,-0.970452042
6,0.3035417907,-1,-1,0.2957041816,-0.3754748303,0.1664231234,0.841
7530001,0.6485950437,0.2895879878};
$Dplane = {0.2006321673,0.4764696504,0.04683977208,-0.87032
85824,0.5576517578,-0.6709109629,0.6503382267,0.8596720738,-
0.2731342375,0.06890150668,-0.05191477092,-0.2847494045,-
0.05269316084,0.389845451}
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structure after next 900 
repetition of optimization script

fintessPlane=-
377
-272
-322
-359
-304
-371
-356
-326
-277
-368
-306
-331
-352
-171

$Aplane = {-0.8159411043,-0.5949862424,-0.3514701599,-0.1285593
732,0.6078703267,-0.3006255828,0.5151925663,0.8001291268,0.078
92000495,0.9015372746,0.1024927641,0.674950266,-0.7316335487,-
0.5487596555};
$Bplane = {0.2255431864,-1,0.6297872424,-0.3498810007,-
0.6142055264,-0.5119318716,-0.309003091,0.1081284548,-
0.07291287829,-0.6997724918,-0.07631474529,0.76280552,0.066170
09698,-0.0004223066636};
$Cplane = {-1,-0.3724308659,0.4192413675,-0.2724308774,-
0.9704520426,-0.542433487,-1,-0.5363352463,-0.111364774,-0.375474
8303,0.1664231234,-0.593365255,0.6485950437,0.2895879878};
$Dplane = {0.9104710663,1.221026766,0.04683977208,0.223877761
2,0.5576517578,0.578314573,0.6503382267,-0.3709916745,0.0951356
767,0.06890150668,-0.05191477092,-0.5342073028,-0.0526931608
4,0.389845451}

structure after next 1200 
repetition of optimization script

fintessPlane=-
367
-319
-360
-382
-395
-369
-393
-392
-396
-264
-275
-446
-233
-311

$Aplane = {-0.8159411043,0.615628249,0.1652141596,0.829298455
,0.6078703267,-0.3006255828,0.9094261355,0.8001291268,0.670
6505671,0.5852755685,0.1024927641,0.5336387027,-0.7316335487,-
0.5487596555}
$Bplane = {0.2255431864,-0.67433088,-0.2534244894,-
0.8480783148,-0.6142055264,-0.5119318716,-0.606176044,0.10812
84548,0.055761581,-0.7924900866,-0.07631474529,0.8949704495
,0.06617009698,-0.0004223066636};$Cplane = {-1,0.3012193158,-
0.6329559244,0.8384846621,-0.9704520426,-0.542433487,0.77142
81778,-0.5363352463,-0.2798229614,-0.9522314486,0.1664231234,-
0.8631508242,0.6485950437,0.2895879878};
$Dplane = {0.9104710663,-0.5017104259,0.5607597222,-0.12598
84188,0.5576517578,0.578314573,-0.7015569465,-0.3709916745,-
0.4829871394,0.427691448,0.05191477092,-0.1619903414,-0.052631
6084,0.389845451}

structure after 3000 repetition 
of optimization script

fintessPlane=-
368
-475
-423
-452
-308
-424
-506
-389
-207
-358
-464
-211
-308
-265

$Aplane = {-0.8159411043,0.3165069806,0.7709898623,0.27601
54585,0.6078703267,0.07255871173,-0.396561329,0.1857705451,-
0.9244773472,-0.09319688926,0.1024927641,-0.04166725558,-
0.7316335487,-0.5487596555};
$Bplane = {0.2255431864,-1,0.5921964307,0.02056636417,-
0.6142055264,-0.3915411887,-0.3674600869,0.4975711007,-
0.3495015359,-0.8516940395,-0.07631474529,-0.07520340767,0.066
17009698,-0.0004223066636};
$Cplane = {-1,-0.1950670765,0.7551600609,-0.3156861987,-0.970452
0426,0.4424282895,-1,-0.485234844,0.8858919962,0.08146179449,0
.1664231234,0.310950727,0.6485950437,0.2895879878};
$Dplane = {0.9104710663,0.08326195688,-0.9439291718,0.2079855
636,0.5576517578,0.1457535786,0.960069169,-0.0924340546,0.166
0461502,0.8234974581,-0.05191477092,0.08565575975,-0.05269316
084,0.389845451};
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6. WORK FOR NDS04 STRUCTURE

All theoretical considerations and programming work described in this thesis had one main aim 
– to produce a buildable, wireframe structure for the NDS pavilion. This linear representation 
should be than used as a skeleton with real materials and it should be firstly visualized in the 3D
space on the computer screen and then manufactured. 

This kind of work seemed to be a real challenge – both in means of time-limit as also a 
responsibility and cooperation with other group members:
 Michelangelo Ribaudo  –  who was responsible for production drawings;
  If Ebnöther and Jörg Grabfelder – who worked on joints details and manufacturing   
 process,  
 Anna Jach and Hanne Sommer – whose job was to design the cover structure; 
 and all other NDS students who also has an influence on the final project.

| 6.1 | three cubes - proposals for further work
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The whole design was evaluating all the time during programming phase. These changes 
and suggestions also influenced GA fitness function or rules for generation algorithm, etc.
so the cooperation was a crucial element of work.

Finally, three optimized structures were presenters to the group and some of assistants. 
One of the proposals was then chosen for further work and production. Some slight 
changes were needed because of group members’ suggestions and ideas. Moreover till the 
last moment there was an idea of a big information panel incorporated to a structure.  at 
the end, during evaluating the first big cartoon model (fig. 6.2), this idea was abandoned 
because the structure itself seemed to be spectacular enough, Finally, the 9-plane cube was 
manufactured and exhibited as a result of NDS group research and work(fig. 6.3, 6.4).

arrays for three cubes from the fig. 6.1

cube1 $Aplane= { -1.072001, 0.6078703267, 0.8001291268, 0.1024927641, -0.5949862424, -0.3006255828, 3.099236 , 
0.137652, -0.7203, 1.338953, 1.012666, 2.242515 }; $Bplane= { 0.628609, -0.6142055264, 0.1081284548, -0.07631474529, 
-1.0, -0.5119318716, -1.794062 , -0.113439, 0.975319, 1.204105, 0.021208, 3.493845 }; $Cplane= { -0.9061, -0.9704520426, 
-0.5363352463, 0.1664231234, -0.3724308659, -0.542433487, 3.507812, 0.197528, 1.171913, -0.690224, -0.612726, -1.059611 }; 

| 6.2 | (left) cardboard model

| 6.3 | | 6.4 | (next pages) NDS04 1:1 structure
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$Dplane= { 1.005457, 0.5576517578, -0.3709916745, -0.05191477092, 1.221026766, 0.578314573, -2.48242, -0.085041, -0.461696, 
-1.17315, -0.193641, -1.66401 };

cube2 $Aplane= {-0.8464384105, -0.342384, -1.085698, 0.5461631397, -0.7931392819, -0.7075098671, 0.8867018132, 0.153747, 
0.4651374461, 0.8292579081, 0.858724, 0.395076 }; $Bplane= { 0.5552307892, 1.054175, -0.896179, 0.4829963586, 0.4004663735, 
0.8736476983, 0.4361461658, -0.950545, 0.3839430073, 0.8649583705, -1.140121, -0.981543}; $Cplane= { -0.8580282306, 
0.939192, -0.914389, -0.2349151238, 0.4380900804, -0.9447640897, 0.236308113, -1.036641, 0.391744454, 0.7720183645, 
-0.246476, 1.199279 }; $Dplane= { 0.4899769628, -0.851391, 1.370001, -0.5304495668, 0.0374235896, 0.6483634222, -1.075752611, 
1.036054, -0.6155449899, -1.011561354, 0.243194, -0.22325 }

cube3 $Aplane= {0.49879, -2.339699, -0.8967815676, -0.7844700563, 0.6078703267, 0.7513749198, 0.3776949831, 0.8935463422, 
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-0.1683425576, 2.408037, -0.680783}; $Bplane= {0.417268, -2.097016, -0.2310051497, 0.3761611482, -0.6142055264, 0.333143232, 
-0.2885789413, -0.8925908984, 0.1705221879, 2.685242, 0.585601}; $Cplane= {-0.138892, 1.087785, 0.5612787313, 0.56206228, -
0.9704520426, 0.4264845831, 0.2957041816, -0.5077448487, -0.1753707825, 1.002112, 0.580152}; $Dplane= {-0.439046, 2.468681, 
0.1730708389, 0.3435490279, 0.5576517578, -0.8574096835, -0.2731342375, 0.1270492236, 0.02952236604, -2.018526, 0.299873};

official cube array
$Aplane= {-0.8464384105, 0.595807, 0.5461631397, -0.7931392819, -0.7075098671, 0.153747, 0.4651374461, 0.858724, 0.395076 }; 
$Bplane= { 0.5552307892, -0.097311, 0.4829963586, 0.4004663735, 0.8736476983, -0.950545, 0.3839430073, -1.140121, -0.981543}; 
$Cplane= { -0.8580282306, -1.14713, -0.2349151238, 0.4380900804, -0.9447640897, -1.036641, 0.391744454, -0.246476, 1.199279 }; 
$Dplane= { 0.48997696, 0.530634, -0.5304495668, 0.0374235896, 0.6483634222, 1.036054, -0.6155449899, 0.243194, -0.22325  };
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7. ADDITIONAL TOOLS

7.1 designer’s touch

During the generation and optimization process the interaction between the script/computer 
and the designer is possible. Not only has the designer set the parameters for these processes: 
he/she can also make some changes “by hand” – just tune the structure that it satisfies his /her
esthetic expectation. Some tools were created to make this interaction easier. The first of them
is printCubeArray procedure. In Maya arrays are printed always as lists of values, without any 
separators and brackets. But when we want to load values from array in Maya, we need the list 
separated by comas and in {} brackets. PrintCubeArray is a small but useful tool to print arrays 
that way that they can be immediately reused.

1
2
3
that is how Maya print values 

$array = {1,2,3} 

that is how the values then have to be loaded.

Next tool is a generatePlaneAndAdd procedure. After a cube is generated there is sometimes a 
need to add new plane to the structure. Adding a new plane – it means adding new values to the 
variable lists in Maya. GeneratePlaneAndAdd needs as parameters coordinates of three points 
located on a plane the user wants to add to the structure. After recalculation the coefficients of
the new plane are added to the adequate variable lists.

Sometimes there is a need to take a look at fitness values of generated cube without optimizing
it (fitness calculation is included in optimization script and normally is not printed – just
analyzed and deleted from memory). The fitness procedure print fitness values for every plane.
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7.2 Panels

The information about how intersection points ( joints) are connected to each other – or in 
other words- how panels are located on cube’s side is crucial for optimization process. But it 
can be also useful for production – if the spaces between structural elements will be filled by
panels, the shapes of them are already calculated and they can be easily drawn. The output 
of drawingPanels procedure execution is 3d model of the cube made of panels which can be 
deformed or used as a basis for further work on production files.

| 7.1 | panels impressions

All .mel files needed form generation and optimization can be found on the CD ROM attached to this thesis.
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8. FURTHER WORK

8.1 generation

While the programming work continued the new, interesting ideas and proposals for further 
work appeared. They dealed with the generation algorithms as well as with optimization. At 
the beginning of the work the biggest question was if to use MAYA features supported by MEL 
(Maya Embedded Language) or to approach in pure mathematical way where MAYA is used only 
for visualization and the output of the generating process are only points coordinates. Finally, 
the second approach was chosen because it seemed to be easier transferable to any other 
programming environment – and this migration was considered quite often (especially after it 
turned out that MAYA does not support well more complex mathematical calculations).

But of course one of the possibilities for further research is a comeback to a starting point of 
the NDS groupwork project idea and trying to work on the structure using MAYA features and 
functions. That means not generating planes by points, but simply by creation and rotation 
of NURBS planes, not looking for intersection points by calculation, but by MAYA intersection 
function and so on. Here also the other methods of optimization could be then  tested – like 
springs (one of dynamic MAYA functions).

8.2 optimization and genetic algorithms

The optimization is a field which gives the biggest possibilities for further work. Firstly, because
it is more complicated and difficult part of the work – so it can simple be improved. Secondly,
the experiments with different fitness function settings, methods of reproduction, mutations,
generation of new planes in evolutionary process could lead to spectacular and unexpected 
results. As well the whole implementation of genetic algorithms could be considered. Moreover, 
also simply new rules could be introduced into already designed optimization algorithm – like 
for example “opening optimization”. This could be a tool which optimize the structure that in a 
chosen area there will be no joints (intersection points) so an opening will be created.
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8.3 other forms - 3D vectors experiments

The fact that the outside and inside form of the NDS04 structure was a cube make some 
simplification in the programming possible. This means that it was quite easy to carry on all
analyses in two dimensions – on planes form by cube’s sides. Of course this method would not 
work for other forms – like blobs, toruses, cylinders – this method will not work. 

There are two ideas for a further work. Firstly, 3D vectors and Bezier curves could be used as the 
analyzed elements for optimization algorithms, so the calculation should be then done with 
their mathematical description. Other possibility is to prepare an approximated structure built 
by flat planes – for blob or cylindrical form. Then this structure can be analyzed similarly as it
was done for a cube and then grids can be projected on the irregular surface. More specified
analysis of the panels could also be introduced (as shape, area analysis).
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9. CONCLUSIONS

On the whole, the main impression of the author, after this intensive two months of 
programming, learning about genetic and evolutionary algorithms as well as MEL is that 
the designed generation and optimization algorithms suggested only a great bunch of new 
possibilities for further research. To put it briefly – the new horizons were opened up, showing
different ways to continue the work on generation (with other programming languages, other 
MAYA tools, on other forms) and on optimization (new algorithms – especially genetic ones, 
also new programming environments, experiments with fitness function).  Also the chosen tool
– MEL – did not come up to the author’s expectation. Moreover, eventually it turned out that  the 
generation and optimization could be calculated without any visualization need; output data of 
these processes  – as a text file – can be easily load in any 3D modeling/visualization program.
This information is particularly important for planning of further experiments because of 
Maya/MEL more complicated mathematical calculation are difficult to execute. But even after
all simplification and approximation caused by time limit and problems with MEL the work
described in this thesis resulted with a design for the structure which was then built by NDS04 
students. And this should be considered as a main achievement. 

| 8.1 | detal of a structure
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Because it is very important that there were a good exchange of all data between generation/
optimization scripts and production drawing scripts, the analysis and choice of the proper 
programming language was done by the author of this thesis together with Michelangelo 
Ribaudo, who was responsible for automated drawing production.
All scripts needed for generation, optimization and production of the NDS2004 study object 
were done in MEL (Maya Embedded Language).  This scripting language allows a user to create 
procedures and scripts for custom modeling, animation, dynamics, and rendering tasks as well 
as customize Maya’s interface. In this particular case it was used for calculation and visualization 
of a wireframe model of cube structure and than production of flat elements’ drawings which
were than used as a basis for milling and laser manufacturing drawings. 

Initially as a scripting language for programming structure of NDS2004 we considered three 
scripting languages of three different 3D modeling or drafting applications: 
    VectorScript (for VectorWorks), 
 advantages: simple, popular in architecture offices, we know basis, possibility of   
 customizing the user interface of the application; 
 disadvantages: no NURBS, slow 3D engine;
    MAXScript (for 3Dstudio MAX)
 advantages: 3D studioMAX is more popular than MAYA in architecture offices;   
 possibility of customizing the user interface of the application ;
 disadvantages: we have not known it yet – and time we had for programming was   
 short;
    MEL (Maya Embedded Language). 
 advantages: we have known it already, so programming could be started at once;   
 possibility of customizing the user interface of the application; fast 3D modeling;
 disadvantages: we did not know them yet;

APPENDIX 1
Maya and MEL
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Now, when the scripting is finished, longer and more detailed list of MEL advantages and
disadvantages can be done:

advantages of using MEL:
 - no need to compile programs: scripting languages commends can be execute   
 immediately in Maya
 - no need to exchange data: generation, optimization and production drawings can   
 be calculated and prepared in one program
 - fast visual feedback – the results of calculation can be easily check by a    
 programmer on the screen, which is important in 3D vector calculations
 - possible use of additional features of Maya – like springs – for next steps and   
 experiments in optymization
 - NURBS surfaces allow fast and accurate visualization of complex forms.

disadvantages of using MEL:
 - Maya is not stable enough for executing long and complicated calculations, which  
 were needed for optimization process
 - some functions which could be useful doesn’t exist in MEL (for example dynamic   
 matrixes);
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APPENDIX 2
list of procedures

GENERATION
name arguments do what

makeABCDwithCounter ABCD of a plane, 
counter

gives the ABCD calculated for a plane 
unique namesto do: connect this 
procedure with calculateABCDofPlane

makePointOnEdge point number generated randomly a point of an edge 
of a cube and gives it a unique name

makePointOnEdgesNEW - repeats three time makePointOnEdge 
procedure, which results with the set of 
points coordinates

angle_between_plane_
and_coordinate_system 

ABCD of a plane check the angle between a plane 
described by coefficients ABCD and
three planes of coordinate system

generatingPlanes number of planes results with 4 arrays of coefficients for a
given number of planes, the planes are 
already analised (see: GENERATION)

CUBE VISUALISATION

calculateABCofLine (x1,y1) (x2,y2), number, 
counter, side number 
and width of the 
wall coordinates of 2 
points and a number 
which is a counter for 
the plane

calculates the ABC of equation of a line 
Ax+By+C=0 created by 2 points and 
gives them unique names
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intPointABC ABC of two lines, 
counters of two lines

calculate intersection point between 
two lines and gives it unique name

drawCubeFromArray 4 arrays: lists of planes 
coefficients A, B, C, D

generate a 1/1/1cube with intersection 
lines on sides; 

PANELS

makingTwoPanelsWithLine panel, ABC of line, nr 
of panel, amount of 
existing panels

calculate two new panels coordinates 
arrays – these panels appear after 
division the panel by line;

PanelDrawer1,…., 
PanelDrawer6

- repeats the procedure 
makingTwoPanelsWithLine as long as 
all panels on a side are found

OPTIMIZATION

edgesOfPanelFitness1,…, 
edgesOfPanelFitness6

panel arrayarrays for 
intersection points 
coordinatespanel 
nrside nrminimal 
distance to 
checkmaximum 
distance to check

checking if the edges of a given panels 
are between minimum and maximum 
proper value; if not, the procedure 
changes already the fitness values for
planes which build the “bad” edges;

measureDistance coordinates of two 
points

gives back the distance between two 
points

closeToEdge the minimum 
distance between the 
joint and the edge 
of cube, number of 
analyzed intersection 
point, side nr, the 
width of the wall

checking if the intersection point ( joint) 
is in a proper distance of the cube 
edge; if not, the procedure changes the 
fitness function for planes which build
the “bad” points

calculateCubeFromArray 4 arrays: lists of planes 
coefficients A, B, C,
Dwidth of the wall

recalculate all the values for a cube 
– intersection points etc.; generally, 
do the same as drawCubeFromArray 
procedure, but without any drawing
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optimization set of instructions, which result with 
the decision which plane is to be 
deleted because it is the worse one 
and with generation of a new one; the 
process repeated for example 100times 
can be called optimization

fitness the same set of instructions as above, 
but without deleting the worse plane; 
results with a pront of fitness array
values in text editor

TOOLS

printCubeArray array print an array in script editor in such 
a syntax that it can be then reload to 
MAYA without any changes

generatePlaneAndAdd coordinates of three 
points

add a new plane to an existing set

drawPanel1side, …, 
drawPane61side

panel nr draw a polyline around the panel and 
close it (so it can be than extrude etc.)

DRAW_PANELS set of instructions where the drawPanel 
procedures are repeated so long that it 
results with the drawing of all panels 
for all sides
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