
The Groningen Twister
An experiment in applied generative design

Dipl. Inform. Fabian Scheurer
Chair for Computer Aided Architectural Design (CAAD)

Institute of Building Technology, ETH Zurich
Switzerland

e-mail: scheurer@hbt.arch.ethz.ch

Abstract

This paper describes a collaborative project between the design team of Kees Christiaanse
Architects & Planners (KCAP) in Rotterdam, an engineering team of Ove Arup & Partners in
Amsterdam and the chair for Computer Aided Architectural Design (CAAD) at the ETH
Zurich. The project was initiated in February 2003.

The aim of the project was to develop a CAD-tool which would help the architects of KCAP
to solve a complex design task: Underneath a pedestrian area that links the main station to the
city center of Groningen/NL, there was a need for parking space for approximately 3000
bicycles. To support the concrete slab of the pedestrian level, the desired design called for
more than one hundred columns of different sizes to be placed in a random pattern, but to be
then sized and controlled according to structural, functional and aesthetic needs.

To solve this problem, a software was developed at the chair for CAAD that simulates a
growth process for the columns. The distribution of the columns is defined by structural rules,
provided by ARUP’s engineers, as well as functional and design rules provided by KCAP’s
designers. The results are presented to the user as a three dimensional, dynamically evolving
model. At any time during this process the user is able to control the model on the screen
interactively. The user can control the process in two distinct ways, on the one hand by
directly controlling the placement of single columns, on the other hand by adjusting various
parameters that define the properties of the columns and the environment. The system
provides real time feedback, as the column distribution tries to adapt to the changed
configuration. This allows the user to test various alternative solutions in very short time.
After a stable and satisfactory condition is achieved, the resulting column locations can be
exported for construction documents in various digital file formats.

The final architectural design, based on the output of the software, has been approved and
construction work in Groningen is about to start.

mailto:scheurer@hbt.arch.ethz.ch

1. Introduction

In the year 2000 Kees Christiaanse Architects & Planners (KCAP) [1] and the University of
Kaiserslautern started the “Kaisersrot” project [2] to develop new methods of urban
development based on “bottom-up” principles. To allow rapid testing of design rules, various
CAD software tools were programmed which allowed to describe inter-dependencies in urban
structures and iteratively generated urban plans according to rules and user interactions. In
2001 the project was merged with the Chair for Computer Aided Architectural Design
(CAAD) at ETH Zurich [3] and the fruitful cooperation resulted in a number of successful
applications, particularly the “Schuytgraaf” project in
Arnhem/NL.

Early in 2003 a design team of KCAP approached the
CAAD chair with another, different problem. This
time it was not an issue of urban design but a complex
architectural design task to be solved. The following
text describes – in the manner of a workshop report –
the solution of this task, which was achieved by a
specifically developed generative standalone CAD-
Tool – the Groningen Twister.

2. How to design a forest of columns?

In the city of Groningen, in northern Holland, KCAP is redesigning
a public square in front of the train station: the Groningen
Stadsbalkon. In order to achieve a better link between the city
center and the station, a bus terminal was moved to the side and
gave way for a spacious new pedestrian area and a semi-
subterranean parking lot for 3000 bicycles underneath.

The final design consists of a concrete flat slab with large holes for
letting light down to the basement and to enable two large trees to
grow up. It has a number of incisions for ramps and stairs. Some
edges of the slab rest on the ground, others loom in the air, flexing
the pedestrian area into a long sweep over the whole length.

To give the whole structure an additional notion of
lightness, the design called for it to be supported on
a field of slim concrete columns. The complex
outline of the slab and the already defined paths and
bicycle stands in the basement made it difficult to
place the columns on a regular grid. As a result, it
was decided to locate the columns randomly, giving
the impression of a “column forest”. To re-enforce
this impression, the design called for the columns to
be made with different diameters and random
degrees of tilt.

Fig. 1: Kaisersrot Software for urban
planning

Fig. 2: Model view of the
Groningen Stadsbalkon

Fig. 3: Longitudinal section and outline

In a first rough calculation, the engineering team at Ove Arup in Amsterdam estimated that it
would take about one hundred columns to hold up the slab and stay within the budget. But
then the problem was: where to place the columns? There were too many degrees of freedom
(column location, tilt angle, column size) and at the same time too many restricting rules
(holes, incisions and paths to avoid, bearing capacities, optimum column distances)
influencing each other and preventing to design a structurally and aesthetically working
solution in reasonable time. A brain twisting task, at least if you tried to do it by hand.

3. Letting them grow

There has been much research into the use of artificial intelligence in design and architecture
since Bill Mitchell stated in 1977 that a “comprehensive CAAD system” had to perform the
function of automatic generation of solutions to well defined problems[4]. Recently, research
into the principles of artificial life (such as cellular automata, swarm systems, and genetic
algorithms) has proven to be a very reasonable way to deal with the ill-defined (or not
adequately definable - due to aesthetic demands) problems of architectural design [5, 6, 7].
The chair for CAAD at ETH Zurich has gained some very positive experiences in the field of
generative bottom-up principles with the already mentioned Kaisersrot project. So it was clear
that a similar solution could be the answer to this problem: A software simulation of “living
columns” that are able to grow on the best locations within a common habitat.

3.1 The habitat

The living space for the columns is well defined
by the functional and conceptual constraints
described in chapter 2: The top ends of all
columns have to be located within the outline of
the slab while avoiding the holes and incisions.
In some areas the slab is lying on the ground, so
no columns are needed there. The bottom ends of
the columns should seek the areas of the bike
stands to get out of the way of pedestrians and
bikers. As a result, the habitat actually consists
of two layers: the slab where the top ends of the
columns have to find their locations, and the
floor plate where the bottom ends have to do so.
Fig. 4 shows the habitat with the slab outline, the
attracting areas in green, and the repelling areas
in red.

Fig. 4a-c: slab outline with holes, bike
stands and areas without cellar (top to
bottom)

3.2 The organisms

The columns represent particles in a swarm system: Each column in the system is an
autonomous individual, exploring the habitat and reacting to its neighboring columns.
According to the two layers of the habitat (see 3.1), the column model consists of two
independent parts. The bottom end can move freely within the ground plane of the model,
whereas the top end can move in the plane described by the slab. The actual column position,

length and tilt is defined by the connecting line. It has to be
assured, that the tilt angle stays below the assigned
maximum.

Fig. 5: column model

This behavior is easily described by a spring-mass-system:
punctual masses are connected by a virtual spring that pulls
depending on the distances between the masses. In our
model each organism is composed of two masses which
describe the top and bottom end of the column and a spring
in between. The force of this spring is proportional to the
horizontal distance and, since the move of the masses is
confined within the two planes of the habitat, they are drawn
to positions above each other.

3.3 Interaction

The columns are interacting with their adjacent columns as well as with the surrounding
habitat following the same simple principles of attraction and repulsion by virtual springs. If
they come to close, the top masses of each column are repelled by the slab outline, the holes,
and the areas without cellar. The bottom masses are attracted by the closest bike stand.

To get the desired effect of distributing the columns, they seek to stay at a certain “social
distance” to each other. This distance is defined by the maximum spanning distance of the
slab and the bearing capacities of the respective columns. The bearing capacity of a column
defines a circle around the top end marking the area where column is able to support the slab
(see Fig. 5). Neighboring columns therefore have to be aligned so that their radii touch or
overlap slightly. This is also accomplished by virtual springs that push or pull between their
respective top masses.

The result is a complex system of masses and springs that can be analyzed in a non-linear
time-step simulation, as described by Martini [8]. To prevent resonance catastrophes and to
promote a termination to the process, an additional damping factor is introduced which
induces a certain friction on the movement of column masses.

4. Implementation

One of the main goals of the project was to create a highly interactive application that would
allow the architects to directly influence the outcome of the simulation process and see
immediate feedback on the decisions they took. Therefore it was necessary to have a
graphical representation of the whole model, preferably in three dimensions, and very short
response times. Since the application had to run in a multitude of different environments (at
the CAAD chair, at KCAP and at ARUP), it was also necessary to address compatibility
issues. Development time for the project was also very short, and it was necessary to quickly
exchange new versions of the software over long distances, so after a few tests it was clear
that the software could and should be programmed in Java. The Java 3D API provides a very
powerful and effective 3D programming interface which at the same time is very clearly
structured and easy to use. It runs on Sun, Windows and Linux systems with OpenGL and
DirectX graphics adapters, and the Java executables – especially in the Java-Archive format

(JAR) - are very lightweight, so the compiled programs could easily be exchanged via email.
[9]

4.1 Column Specifications

The specifications of the columns were given by Arup as shown in Tab. 1. There are three
types of columns with different diameters and bearing capacities. The maximum radius of the
column results from the bearing capacity and defines the distance between the columns as
shown in 3.2. The tilt angle of the columns was limited to 10
degrees so that this factor could be ignored in structural
calculations. Also the height differences between the ground
plane and the slab were not cared for and an average height of
3.0 meters was used throughout the habitat. The approximate
number of columns needed was estimated by Arup based on
the maximum radii and the building budget which would only
allow for a certain number of columns.

4.2 Prototype: arranging columns

The first version of the software was a simple particle system: the columns as described in
chap. 3.2 could be “thrown” into the middle of the habitat and immediately started to arrange
themselves according to the
definitions. The user could
pick and drag a single
column and change various
parameters influencing the
interaction amongst the
columns and between the
columns and the habitat
(slab, bike stands, holes).
The viewpoint could be
changed via mouse
dragging, keyboard naviga-
tion and various preset
viewpoints. The results
could be exported as two
dimensional SVG graphics
and as comma separated
lists of column locations.

Tab. 1: column specifications
by Arup

diameter
[mm]

max. rad.
[m]

approx.
number

150 2.0 15
250 3.0 35
300 4.0 50

Fig. 6: Screenshot of the Groningen Twister prototype

Results
The results achieved with this first version were very encouraging. The columns managed to
arrange in very reasonable patterns, as is shown in Fig. 6. With some tweaking of the
parameters, stable conditions could be reached in very short time. The frame rate of the
simulation was high enough to directly interact with column numbers up to 150 on an average
notebook without hardware graphics acceleration.

But there still were some flaws. Besides pushing each other there was no real interaction

between the columns, and they were not reacting on their environmental situation. Once
assigned, a column could not change its type anymore. So the arrangement of the column-
types was only dependant on the random placement in the beginning and the user who could
drag single columns to new (better) locations. There were also big structural problems in the
center of the slab where no bike stands were planned, so the columns had no place to position
themselves. Furthermore, after they had been shown the first version, the engineers at ARUP
came up with some additional structural constraints. So the next version of the Groningen
Twister was planned with some major changes.

4.3 Final version: Growing columns

While testing the prototype, construction details appeared which had not been part of the
initial considerations: Two expansion joints across the middle of the slab were necessary.
Parts of the slab were interspersed with glass blocks which influenced the spanning capacity
and therefore the maximum column distance in the affected areas. Some the edges of the slab,
the edges of the holes, and the expansion joints, also required different structural responses
with regards to cantilevering and column distances.

New model of the slab
To integrate the new structural rules
into the system, a different model of
the slab was necessary: It now
consisted of five independent
partitions, separated by the joints and
the border line between areas with
and without glass blocks. In reaction
to the differing structural demands in
various regions of the slab, the
partitions, their edges and the holes
were grouped into five categories
with independent parameters as
shown with different colors in Fig. 7.

Fig. 7: ARUP sketch of the different regions of the
slab. Expansion joints run vertically through the
middle of the slab. The blue area contains glass blocks,
green edges are supported on walls or the ground

Paths instead of column areas
To avoid the column-less area in the middle of the slab, the criteria for the placement of the
lower column ends was changed completely. The task – to keep columns from obstructing the
paths – was now modeled directly: Instead of being attracted by the bike-stand areas the
columns now are repelled by the paths, which are defined by their center lines. According to
their traffic volume the paths are grouped in three categories with different repelling forces,
ranging from the main bike route through the center, to the secondary paths at the stairs, and
the small access paths between the bike stands.

Growing columns
The most important change from the prototype was the completely different approach in
distributing the columns. By making them pressure sensitive and able to change their type, an
actual growth process was possible. Instead of assigning a column diameter and bearing
radius from the beginning, the columns were now able to adapt to their surroundings by
changing their size autonomously.

A column that is too far away from its neighbors detects a low surrounding pressure and starts
to grow in discrete steps, matching the column types defined in chapter 4.1 (see Fig. 8a). If it
reaches the largest possible state and still has no close neighbors,
it splits into two small columns which both start growing again
(see Fig. 8b). If a column gets to close with its neighbors or the
edges of the habitat the resulting pushing increases the pressure
and it starts shrinking in just the same way (Fig. 8c). And if it
reaches the smallest state while the pressure remains high, it
finally dies (Fig. 8d). Thus, by “seeding” a single column the
whole area of the slab is filling up with columns over time.

The pressure threshold values for the growing and shrinking can
be adjusted for each column type independently, so it is possible
to influence the distribution of columns to the three types. In
some regions of the slab where the spanning capacity is lower
due to glass inlays, the growth is restricted to the two smaller
column types.

Fig. 8a-d: A column is
growing, splitting,
shrinking and dying.

Fig. 9: Screenshot of the Groningen Twister before adding columns

Results

The results of this version proved to be much better than that of the prototype. After
“seeding” a single column into each of the five slab partitions, they start growing, splitting
and eventually filling up the whole area. The column types adjust to the necessities of their
location (see Fig. 10). After a few tries it was possible to adjust the default parameters so that
the structural constraints were fulfilled to a high degree. Various color coding schemes
proved to be helpful. It is for example possible to tint the columns relative to their kinetic
energy (see Fig. 11a) or mark those columns which exceeded the maximum tilt angle (see Fig.
11b). In very short time the architects at KCAP were able to handle the various parameters
quite well and produced numerous versions of the column layout. The best version was
exported to AutoCAD and used as a basis for the further development of the final design (see
Fig. 12).

A few problems turned up in the working phase, which could not be completely solved due to
lack of time: The discrete growth of the columns caused the phenomenon that the total kinetic
energy of the system increased every time a column changed its type. Either a growing
column applied a greater pushing force on its adjacent columns, or the neighbors of a

shrinking column suddenly had more room
to move and therefore a higher potential
energy to be turned into velocity. In tight
situations (like in the upper right corner in
Fig. 11a) this lead to very unstable
conditions with high velocities and a high
type-change rate. Also it was difficult to
prevent columns from exceeding the
maximum tilt angle when their lower ends
came too close to a path. The linear
increase of the erecting force was
sometimes much lower than the accumu-
lated pushing and pulling forces the
attractors and repellors applied to the
column ends.

Fig. 10a-b: Twister in action, color coding by
column type

Fig. 11a-b: Color coding by kinetic energy (top)
and excessive tilt angle (bottom)

Fig. 12: Rendering of the final layout
(by kind permission of KCAP)

5. Summary and future work

The basic concept for this generative tool is direct interaction. The software is looked upon as
an interface which maps the different views of the project participants onto a single model
and therefore allows a very different mode of communication about the project. In this case
the architects at KCAP stated their design idea based on a flat slab and the notion of a
“column forest” and the engineers at ARUP provided a set of rules of thumb which would
ensure that the design stayed within structural possibilities, based on their notion of a concrete
structure. Programming these rules into a plain simulation system and allowing the user only
to start and stop the process would reduce the task to a mere optimization problem with a
probabilistic outcome based on the quality of the software design. But if the simulation is
highly interactive, so that the user can influence the process at any given time, it becomes a
true design tool. This tool allows the architect the freedom to decide about the aesthetic and
functional aspects of the design, while steadily, but uncompromisingly, pushing the results to
a state that satisfies all of the structural rules.

There have already been requests for studies on similar projects. To be able to rapidly develop
further simulation studies it is planned to develop a software toolkit based on the most
valuable insights gained from this experiment.

Steady growth
The sometimes explosive increase of kinetic energy in the system as described in 4.3 poses a
big problem. The system never reaches a stable equilibrium as long as the deceleration by
damping is lower than the acceleration by type-change of columns. To simply turn up the
damping parameter only leads to suboptimal states because the columns are handicapped in
arranging their positions. To turn off the growing and shrinking on the other hand prevents
them from adjusting their size. The dilemma could be resolved by the introduction of a
continuous growth of the bearing radii. The resulting column diameters could still be discrete,
some of the columns would then simply be over-dimensioned.

User Interface
Since the target user group of design tools like the Groningen Twister is architects in a
professional environment, the software has to become more user friendly and ergonomic. It
has been criticized by the users that there was no possibility to save intermediate states of the
evolving structure to be able to start later explorations from there on. To be able to quickly
react on design changes, import filters for CAD files are needed. Also a direct output to CAD
formats is highly desirable.

Statistics and measurements
In the current version, the designer has to rely on the software to deliver “correct” solutions
without having a detailed control mechanism to see whether structural needs are fulfilled.
What the Groningen Twister is lacking up to now is a quantitative “fitness measure” of the
achieved solution. Fitness measures could, for example, be a comparison of the number of
columns required to cover the whole slab, the amount of “overlapping” bearing radii, the
exceeding of tilt angles, and so on. This would allow a precise identification of the structur-
ally and functionally best solution and leave the aesthetic judgement to the designer. The
inclusion of this quantitative evaluation would also make automatic parameter testing possible
or the evolvement of solutions by genetic algorithms.

Acknowledgements

This work would not have been possible without the support of the following people:

y Prof. Dr. Ludger Hovestadt, head of the CAAD chair at ETH Zurich
y Oliver Fritz and Markus Braach, the Kaisersrot team at CAAD/ETH Zurich
y Andy Woodcock, architect and project manager, and his team at KCAP Rotterdam
y Arjan Harbraken, engineer and project manager, and his team at ARUP Amsterdam

References

[1] Kees Christiaanse Architects & Planners Website: www.kcap.nl
[2] Kaisersrot Website: www.kaisersrot.com
[3] CAAD Website: www.caad.arch.ethz.ch
[4] Mitchell W.J. 1977, Computer-aided architectural design - New York : Petro-

celli/Charter.
[5] Coates, P.; Healy, N.; Lamb, C.; Voon, W.L. 1996: The use of cellular automata to

explore bottom up architectural rules. Eurographics
[6] Frazer, J. 1995: An Evolutionary Architecture , AA Themes no 7, London, The

Architectural Association.
[7] O‘Sullivan, D.; Torres, P.M. 2000: Cellular models of urban structures, in Bandini,

S. & Worsch, T. (eds.) 2001: Theoretical and Practical Issues on Cellular Automata,
Proceedings of the Fourth International Conference on Cellular Automata for Re-
search and Industry (ACRI 2000), pages 108–116.

[8] Martini. K. 2001: Non-linear Structural Analysis as Real-Time Animation, in de
Vries, B. et al. (eds.): CAAD Futures 2001 Proceedings, page 643-656, Dordrecht,
Kluwer

[9] Sun’s Java Website: java.sun.com. Versions used for the development of the Gronin-
gen Twister: J2SDK 1.4.3 and Java3D 1.3.1.

[10] Kennedy J.; Eberhart R.C.; with Yuhui Shi 2001: Swarm intelligence, San Francisco,
Morgan Kaufmann.

	Introduction
	How to design a forest of columns?
	Letting them grow
	The habitat
	The organisms
	Interaction

	Implementation
	Column Specifications
	Prototype: arranging columns
	Results

	Final version: Growing columns
	New model of the slab
	Paths instead of column areas
	Growing columns
	Results

	Summary and future work
	Steady growth
	User Interface
	Statistics and measurements

	Acknowledgements
	References

		scheurer@hbt.arch.ethz.ch
	2003-11-10T17:47:18+0100
	Zurich
	Fabian Scheurer
	I am the author of this document

