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Abstract 

This paper describes a collaborative project between the design team of Kees Christiaanse 
Architects & Planners (KCAP) in Rotterdam, an engineering team of Ove Arup & Partners in 
Amsterdam and the chair for Computer Aided Architectural Design (CAAD) at the ETH 
Zurich. The project was initiated in February 2003. 

The aim of the project was to develop a CAD-tool which would help the architects of KCAP 
to solve a complex design task: Underneath a pedestrian area that links the main station to the 
city center of Groningen/NL, there was a need for parking space for approximately 3000 
bicycles. To support the concrete slab of the pedestrian level, the desired design called for 
more than one hundred columns of different sizes to be placed in a random pattern, but to be 
then sized and controlled according to structural, functional and aesthetic needs.  

To solve this problem, a software was developed at the chair for CAAD that simulates a 
growth process for the columns. The distribution of the columns is defined by structural rules, 
provided by ARUP’s engineers, as well as functional and design rules provided by KCAP’s 
designers. The results are presented to the user as a three dimensional, dynamically evolving 
model. At any time during this process the user is able to control the model on the screen 
interactively. The user can control the process in two distinct ways, on the one hand by 
directly controlling the placement of single columns, on the other hand by adjusting various 
parameters that define the properties of the columns and the environment. The system 
provides real time feedback, as the column distribution tries to adapt to the changed 
configuration.  This allows the user to test various alternative solutions in very short time. 
After a stable and satisfactory condition is achieved, the resulting column locations can be 
exported for construction documents in various digital file formats. 

The final architectural design, based on the output of the software, has been approved and 
construction work in Groningen is about to start. 
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1. Introduction 

In the year 2000 Kees Christiaanse Architects & Planners (KCAP) [1] and the University of 
Kaiserslautern started the “Kaisersrot” project [2] to develop new methods of urban 
development based on “bottom-up” principles. To allow rapid testing of design rules, various 
CAD software tools were programmed which allowed to describe inter-dependencies in urban 
structures and iteratively generated urban plans according to rules and user interactions. In 
2001 the project was merged with the Chair for Computer Aided Architectural Design 
(CAAD) at ETH Zurich [3] and the fruitful cooperation resulted in a number of successful 
applications, particularly the “Schuytgraaf” project in 
Arnhem/NL.  

Early in 2003 a design team of KCAP approached the 
CAAD chair with another, different problem. This 
time it was not an issue of urban design but a complex 
architectural design task to be solved. The following 
text describes – in the manner of a workshop report – 
the solution of this task, which was achieved by a 
specifically developed generative standalone CAD-
Tool – the Groningen Twister. 

2. How to design a forest of columns? 

In the city of Groningen, in northern Holland, KCAP is redesigning 
a public square in front of the train station: the Groningen 
Stadsbalkon. In order to achieve a better link between the city 
center and the station, a bus terminal was moved to the side and 
gave way for a spacious new pedestrian area and a semi-
subterranean parking lot for 3000 bicycles underneath. 

The final design consists of a concrete flat slab with large holes for 
letting light down to the basement and to enable two large trees to 
grow up. It has a number of incisions for ramps and stairs. Some 
edges of the slab rest on the ground, others loom in the air, flexing 
the pedestrian area into a long sweep over the whole length.  

To give the whole structure an additional notion of 
lightness, the design called for it to be supported  on 
a field of slim concrete columns. The complex 
outline of the slab and the already defined paths and 
bicycle stands in the basement made it difficult to 
place the columns on a regular grid. As a result, it 
was decided to locate the columns randomly, giving 
the impression of a “column forest”. To re-enforce 
this impression, the design called for the columns to 
be made with different diameters and random 
degrees of tilt. 

Fig. 1: Kaisersrot Software for  urban 
planning 

Fig. 2: Model view of the 
Groningen Stadsbalkon  

Fig. 3: Longitudinal section and outline 

 



In a first rough calculation, the engineering team at Ove Arup in Amsterdam estimated that it 
would take about one hundred columns to hold up the slab and stay within the budget. But 
then the problem was: where to place the columns? There were too many degrees of freedom 
(column location, tilt angle, column size) and at the same time too many restricting rules 
(holes, incisions and paths to avoid, bearing capacities, optimum column distances) 
influencing each other and preventing to design a structurally and aesthetically working 
solution in reasonable time. A brain twisting task, at least if you tried to do it by hand. 

3. Letting them grow 

There has been much research into the use of artificial intelligence in design and architecture 
since Bill Mitchell stated in 1977 that a “comprehensive CAAD system” had to perform the 
function of automatic generation of solutions to well defined problems[4]. Recently, research 
into the principles of artificial life (such as cellular automata, swarm systems, and genetic 
algorithms) has proven to be a very reasonable way to deal with the ill-defined (or not 
adequately definable - due to aesthetic demands) problems of architectural design [5, 6, 7].  
The chair for CAAD at ETH Zurich has gained some very positive experiences in the field of 
generative bottom-up principles with the already mentioned Kaisersrot project. So it was clear 
that a similar solution could be the answer to this problem: A software simulation of  “living 
columns” that are able to grow on the best locations within a common habitat. 

3.1 The habitat 

The living space for the columns is well defined 
by the functional and conceptual constraints 
described in chapter 2: The top ends of all 
columns have to be located within the outline of 
the slab while avoiding the holes and incisions. 
In some areas the slab is lying on the ground, so 
no columns are needed there. The bottom ends of 
the columns should seek the areas of the bike 
stands to get out of the way of pedestrians and 
bikers. As a result, the habitat actually consists 
of two layers: the slab where the top ends of the 
columns have to find their locations, and the 
floor plate where the bottom ends have to do so.  
Fig. 4 shows the habitat with the slab outline, the 
attracting areas in green, and the repelling areas 
in red.  

Fig. 4a-c: slab outline with holes, bike 
stands and areas without cellar (top to 
bottom) 

3.2 The organisms 

The columns represent particles in a swarm system: Each column in the system is an 
autonomous individual, exploring the habitat and reacting to its neighboring columns. 
According to the two layers of the habitat (see 3.1), the column model consists of two 
independent parts. The bottom end can move freely within the ground plane of the model, 
whereas the top end can move in the plane described by the slab. The actual column position, 



length and tilt is defined by the connecting line. It has to be 
assured, that the tilt angle stays below the assigned 
maximum. 

Fig. 5: column model 

This behavior is easily described by a spring-mass-system: 
punctual masses are connected by a virtual spring that pulls 
depending on the distances between the masses. In our 
model each organism is composed of two masses which 
describe the top and bottom end of the column and a spring 
in between. The force of this spring is proportional to the 
horizontal distance and, since the move of the masses is 
confined within the two planes of the habitat, they are drawn 
to positions above each other. 

3.3 Interaction 

The columns are interacting with their adjacent columns as well as with the surrounding 
habitat following the same simple principles of attraction and repulsion by virtual springs. If 
they come to close, the top masses of each column are repelled by the slab outline, the holes, 
and the areas without cellar.  The bottom masses are attracted by the closest bike stand.  

To get the desired effect of distributing the columns, they seek to stay at a certain “social 
distance” to each other. This distance is defined by the maximum spanning distance of the 
slab and the bearing capacities of the respective columns. The bearing capacity of a column 
defines a circle around the top end marking the area where column is able to support the slab 
(see Fig. 5). Neighboring columns therefore have to be aligned so that their radii touch or 
overlap  slightly. This is also accomplished by virtual springs that push or pull between their 
respective top masses.  

The result is a complex system of masses and springs that can be analyzed in a non-linear 
time-step simulation, as described by Martini [8]. To prevent resonance catastrophes and to 
promote a termination to the process, an additional damping factor is introduced which 
induces a certain friction on the movement of column masses. 

4. Implementation 

One of the main goals of the project was to create a highly interactive application that would 
allow the architects to directly influence the outcome of the simulation process and see 
immediate feedback on the decisions they took. Therefore it was necessary to have a 
graphical representation of the whole model, preferably in three dimensions, and very short 
response times. Since the application had to run in a multitude of different environments (at 
the CAAD chair, at KCAP and at ARUP), it was also necessary to address compatibility 
issues. Development time for the project was also very short, and it was necessary to quickly 
exchange new versions of the software over long distances, so after a few tests it was clear 
that the software could and should be programmed in Java. The Java 3D API provides a very 
powerful and effective 3D programming interface which at the same time is very clearly 
structured and easy to use. It runs on Sun, Windows and Linux systems with OpenGL and 
DirectX graphics adapters, and the Java executables – especially in the Java-Archive format 



(JAR) - are  very lightweight, so the compiled programs could easily be exchanged via email. 
[9] 

4.1 Column Specifications 

The specifications of the columns were given by Arup as shown in Tab. 1. There are three 
types of columns with different diameters and bearing capacities. The maximum radius of the 
column results from the bearing capacity and defines the distance between the columns as 
shown in 3.2. The tilt angle of the columns was limited to 10 
degrees so that this factor could be ignored in structural 
calculations. Also the height differences between the ground 
plane and the slab were not cared for and an average height of 
3.0 meters was used throughout the habitat. The approximate 
number of columns needed was estimated by Arup based on 
the maximum radii and the building budget which would only 
allow for a certain number of columns. 

4.2 Prototype: arranging columns 

The first version of the software was a simple particle system: the columns as described in 
chap. 3.2 could be “thrown” into the middle of the habitat and immediately started to arrange 
themselves according to the 
definitions. The user could 
pick and drag a single 
column and change various 
parameters influencing the 
interaction amongst the 
columns and between the 
columns and the habitat 
(slab, bike stands, holes). 
The viewpoint could be 
changed via mouse 
dragging, keyboard naviga-
tion and various preset 
viewpoints. The results 
could be exported as two 
dimensional SVG graphics 
and as comma separated 
lists of column locations. 

Tab. 1: column specifications 
by Arup 

diameter  
[mm] 

max. rad.  
[m] 

approx. 
number

150 2.0 15
250 3.0 35
300 4.0 50

Fig. 6: Screenshot of the Groningen Twister prototype 

Results 
The results achieved with this first version were very encouraging. The columns managed to 
arrange in very reasonable patterns, as is shown in Fig. 6. With some tweaking of the 
parameters, stable conditions could be reached in very short time. The frame rate of the 
simulation was high enough to directly interact with column numbers up to 150 on an average 
notebook without hardware graphics acceleration.  

But there still were some flaws. Besides pushing each other there was no real interaction 



between the columns, and they were not reacting on their environmental situation. Once 
assigned, a column could not change its type anymore. So the arrangement of the column-
types was only dependant on the random placement in the beginning and the user who could 
drag single columns to new (better) locations. There were also big structural problems in the 
center of the slab where no bike stands were planned, so the columns had no place to position 
themselves. Furthermore, after they had been shown the first version, the engineers at ARUP 
came up with some additional structural constraints. So the next version of the Groningen 
Twister was planned with some major changes. 

4.3 Final version: Growing columns 

While testing the prototype, construction details appeared which had not been part of the 
initial considerations: Two expansion joints across the middle of the slab were necessary. 
Parts of the slab were interspersed with glass blocks which influenced the spanning capacity 
and therefore the maximum column distance in the affected areas. Some the edges of the slab, 
the edges of the holes, and the expansion joints, also required different structural responses 
with regards to cantilevering and column distances.  

New model of the slab 
To integrate the new structural rules 
into the system, a different model of 
the slab was necessary: It now 
consisted of five independent 
partitions, separated by the joints and 
the border line between areas with 
and without glass blocks. In reaction 
to the differing structural demands in 
various regions of the slab, the 
partitions, their edges and the holes 
were grouped into five categories 
with independent parameters as 
shown with different colors in Fig. 7.  

Fig. 7: ARUP sketch of the different regions of the 
slab. Expansion joints run vertically through the 
middle of the slab. The blue area contains glass blocks, 
green edges are supported on walls or the ground 

Paths instead of column areas 
To avoid the column-less area in the middle of the slab, the criteria for the placement of the 
lower column ends was changed completely. The task – to keep columns from obstructing the 
paths – was now modeled directly: Instead of being attracted by the bike-stand areas the 
columns now are repelled by the paths, which are defined by their center lines. According to 
their traffic volume the paths are grouped in three categories with different repelling forces,  
ranging from the main bike route through the center, to the secondary paths at the stairs, and 
the small access paths between the bike stands.  

Growing columns 
The most important change from the prototype was the completely different approach in 
distributing the columns. By making them pressure sensitive and able to change their type, an 
actual growth process was possible. Instead of assigning a column diameter and bearing 
radius from the beginning, the columns were now able to adapt to their surroundings by 
changing their size autonomously. 



A column that is too far away from its neighbors detects a low surrounding pressure and starts 
to grow in discrete steps, matching the column types defined in chapter  4.1 (see Fig. 8a). If it 
reaches the largest possible state and still has no close neighbors, 
it splits into two small columns which both start growing again 
(see Fig. 8b). If a column gets to close with its neighbors or the 
edges of the habitat the resulting pushing increases the pressure 
and it starts shrinking in just the same way (Fig. 8c). And if it 
reaches the smallest state while the pressure remains high, it 
finally dies (Fig. 8d). Thus, by “seeding” a single column the 
whole area of the slab is filling up with columns over time. 

The pressure threshold values for the growing and shrinking can 
be adjusted for each column type independently, so it is possible 
to influence the distribution of columns to the three types. In 
some regions of the slab where the spanning capacity is lower 
due to glass inlays, the growth is restricted to the two smaller 
column types. 

Fig. 8a-d: A column is 
growing, splitting, 
shrinking and dying. 

Fig. 9: Screenshot of the Groningen Twister before adding columns 



Results

The results of this version proved to be much better than that of the prototype. After 
“seeding” a single column into each of the five slab partitions, they start growing, splitting 
and eventually filling up the whole area. The column types adjust to the necessities of their 
location (see Fig. 10). After a few tries it was possible to adjust the default parameters so that 
the structural constraints were fulfilled to a high degree. Various color coding schemes 
proved to be helpful. It is for example possible to tint the columns relative to their kinetic 
energy (see Fig. 11a) or mark those columns which exceeded the maximum tilt angle (see Fig. 
11b). In very short time the architects at KCAP were able to handle the various parameters 
quite well and produced numerous versions of the column layout. The best version was 
exported to AutoCAD and used as a basis for the further development of the final design (see 
Fig. 12).  

A few problems turned up in the working phase, which could not be completely solved due to 
lack of time: The discrete growth of the columns caused the phenomenon that the total kinetic 
energy of the system increased every time a column changed its type. Either a growing 
column applied a greater pushing force on its adjacent columns, or the neighbors of a 

shrinking column suddenly had more room 
to move and therefore a higher potential 
energy to be turned into velocity. In tight 
situations (like in the upper right corner in 
Fig. 11a) this lead to very unstable 
conditions with high velocities and a high 
type-change rate. Also it was difficult to 
prevent columns from exceeding the 
maximum tilt angle when their lower ends 
came too close to a path. The linear 
increase of the erecting force was 
sometimes much lower than the accumu-
lated pushing and pulling forces the 
attractors and repellors applied to the 
column ends.  

Fig. 10a-b: Twister in action, color coding by 
column type 

Fig. 11a-b: Color coding by kinetic energy (top) 
and excessive tilt angle (bottom) 

Fig. 12: Rendering of the final layout  
(by  kind permission of KCAP) 



5. Summary and future work 

The basic concept for this generative tool is direct interaction. The software is looked upon as 
an interface which maps the different views of the project participants onto a single model 
and therefore allows a very different mode of communication about the project. In this case 
the architects at KCAP stated their design idea based on a flat slab and the notion of a 
“column forest” and the engineers at ARUP provided a set of rules of thumb which would 
ensure that the design stayed within structural possibilities, based on their notion of a concrete 
structure. Programming these rules into a plain simulation system and allowing the user only 
to start and stop the process would reduce the task to a mere optimization problem with a 
probabilistic outcome based on the quality of the software design. But if the simulation is 
highly interactive, so that the user can influence the process at any given time, it becomes a 
true design tool. This tool allows the architect the freedom to decide about the aesthetic and 
functional aspects of the design, while steadily, but uncompromisingly, pushing the results to 
a state that satisfies all of  the structural rules. 

There have already been requests for studies on similar projects. To be able to rapidly develop 
further simulation studies it is planned to develop a software toolkit based on the most 
valuable insights gained from this experiment. 

Steady growth 
The sometimes explosive increase of kinetic energy in the system as described in 4.3 poses a 
big problem. The system never reaches a stable equilibrium as long as the deceleration by 
damping is lower than the acceleration by type-change of columns. To simply turn up the 
damping parameter only leads to suboptimal states because the columns are handicapped in 
arranging their positions. To turn off the growing and shrinking on the other hand prevents 
them from adjusting their size. The dilemma could be resolved by the introduction of a 
continuous growth of the bearing radii. The resulting column diameters could still be discrete, 
some of the columns would then simply be over-dimensioned. 

User Interface 
Since the target user group of design tools like the Groningen Twister is architects in a 
professional environment, the software has to become more user friendly and ergonomic. It 
has been criticized by the users that there was no possibility to save intermediate states of the 
evolving structure to be able to start later explorations from there on. To be able to quickly 
react on design changes, import filters for CAD files are needed. Also a direct output to CAD 
formats is highly desirable.  

Statistics and measurements 
In the current version, the designer has to rely on the software to deliver “correct” solutions 
without having a detailed control mechanism to see whether structural needs are fulfilled. 
What the Groningen Twister is lacking up to now is a quantitative “fitness measure” of the 
achieved solution. Fitness measures could, for example, be a comparison of the number of 
columns required to cover the whole slab, the amount of “overlapping” bearing radii, the 
exceeding of tilt angles, and so on. This would allow a precise identification of the structur-
ally and functionally best solution and leave the aesthetic judgement to the designer. The 
inclusion of this quantitative evaluation would also make automatic parameter testing possible 
or the evolvement of solutions by genetic algorithms. 
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